
Lectures in physics B. M. Roberts – 2025

1 Green’s functions and retarded
potentials in electrodynamics

1.1 Green’s functions recap

Consider an inhomogeneous differential equation of form

Lxu(x) = f(x), (1.1)

where L is a general linear operator, which acts on coor-
dinate x (e.g., ∂2). If we could “invert” the operator, we
could easily find solutions u = L−1f .
With this thought as a loose motivation, we associate to

L a Green’s function, G, which is defined via:

LxG(x, x′) ≡ δ(x− x′), (1.2)

which at least kind of looks like an inverse. But is this
useful? Well, assuming G is known, notice that if we act
on f(x) with LxG and integrate, we may write∫

dx′LxG(x, x′)f(x′) =

∫
dx′δ(x− x′)f(x′)

Lx

∫
dx′G(x, x′)f(x′) = f(x), (1.3)

where we moved the linear Lx operator through the integral
sign on the left-hand-side, since it acts only on coordinate
x (not x′), and used the Dirac delta to evaluate the integral
on the right-hand-side. By comparing with Eq. (1.1), we
recognise the remaining integral as u(x). As such, presum-
ing G can be found by solving (1.2), we may easily find
solutions to the inhomogeneous equation:

u(x) =

∫
dx′G(x, x′)f(x′), (1.4)

called the Green’s function solution to the differential equa-
tion.
In general, the differential operator L may also admit

solutions to the homogeneous equation

Lu0(x) = 0.

Since the operator is linear, the most general solution to
Eq. (1.1) can be written as the sum u(x) = u0(x) + u∗(x),
where u∗(x) is a particular solution satisfying Lu∗(x) =
f(x). The Green’s function expression in Eq. (1.4) gives
such a particular solution u∗(x). Therefore, the general
solution to the inhomogeneous equation is:

u(x) = u0(x) +

∫
dx′ G(x, x′)f(x′). (1.5)

The homogeneous component u0(x) is fixed by the bound-
ary or initial conditions. In practical problems, we can
often choose u0 = 0.

1.2 Poisson equation (electrostatic)

As a concrete example, we’ll consider the 3D static Poisson
equation (which follows directly from Gauss’ law):

∇2ϕ(x) = −ρ(x). (1.6)

The corresponding Green’s function is defined:

∇2G ≡ δ(3)(x− x′). (1.7)

Noting the spherical symmetry of the Laplacian and the
delta, we conclude that G = G(r), where r = |x−x′|. It is
therefore also convenient to write the Laplacian in spherical
coordinates. Away from the origin, the delta function is
zero, and so we have

1

r2
d

dr

(
r2

dG

dr

)
= 0 for r ̸= 0.

The simplest way to solve this is by defining χ = rG, in
which case the equation becomes χ′′ = 0. Integrating twice,
we see χ = a+ br, or

G =
a

r
+ b. (1.8)

Requiring that G → 0 as r → ∞ allows us to set b = 0. We
find the constant a by integrating Eq. (1.7) over a small
sphere of radius R around r = 0 using Gauss’ theorem:∮

V

(∇2G) d3r =

∮
S

(∇G) · dS = 1,

where S is the surface of the volume, dS is the surface ele-
ment (outwardly) normal to the surface, and we performed
the integral on the right-hand-side of (1.7) by noting that
the delta function integrates to 1. We have ∇ 1

r = − 1
r3 r, so

−a

∮
S

1

r2
(n̂ · dS) = −a

1

R2

∮
S

(n̂ · dS) = −a
1

R2
(4πR2) = 1,

where n̂ = r/|r| is parallel to the surface element dS, so
the integral is just the surface area of the sphere S. Thus,
we find a = −1/(4π), and so the Green’s function is:

G(x,x′) =
−1

4π|x− x′| . (1.9)

Finally, we have the solution to the Poisson equation:

ϕ(x) =
1

4π

∫
ρ(x′)

|x− x′|d
3x′. (1.10)

It’s important to note that the spherical symmetry argu-
ment that applied for the Green’s function certainly does
not apply (in general) for the Poisson equation.

1.2.1 Fourier transform method

We may also find the Green’s function (1.7) in perhaps a
more straight-forward way by using the method of Fourier
transforms. We use the Fourier representation of the delta
function,

δ(x) =

∫
d3k

(2π)3
eik·x, (1.11)

and of the Green’s function:

G(x− x′) =

∫
d3k

(2π)3
G̃(k)eik·(x−x′). (1.12)

Then, inserting into (1.7), and acting with the differential
operator under the integral sign, we have∫

d3k

(2π)3
G̃(k)∇2eik·(x−x′) =

∫
d3k

(2π)3
eik·(x−x′), (1.13)

from which we can read off

(ik) · (ik) G̃(k) = 1. (1.14)
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Plugging back into Eq. (1.12), we find the integral expres-
sion for the Green’s function:

G(x− x′) = −
∫

d3k

(2π)3
eik·(x−x′)

k2
(1.15)

= −2π

∫ ∞

0

k2dk

(2π)3

∫ π

0

dθ sin θ
eik·(x−x′)

k2

= − 1

(2π)2

∫ ∞

0

dk

∫ 1

−1

dγ eik(x−x′)γ ,

where we took advantage of the spherical symmetry, with
k = |k| and x = |x|, and made change of variables γ =
cos θ. Continuing, we have

G(x− x′) = − 2

(2π)2

∫ ∞

0

sin(kr)

kr
dk

=
−1

4π

1

|x− x′| , (1.16)

where I introduced r = |x − x′| for brevity. The final
integral is a little tricky due to the removable singularity
at k = 0, though can be performed using complex analysis
(or just with a standard table of integrals!).

1.3 Electrodynamics: retarded potentials

From Maxwell’s inhomogeneous equation, we have1

∂µF
µν =

1

c
jµ (1.17)

∂2Aν − ∂ν∂µA
µ =

1

c
jν .

By imposing the Lorenz gauge choice, ∂µA
µ = 0, this sim-

plifies to:

∂2Aµ =
1

c
jµ, (1.18)

which may be called the inhomogeneous d’Alembert equa-
tion. In terms of the perhaps more familiar scalar and
vector potentials, we have2

1

c2
∂2Φ

∂t2
−∇2Φ = ρ, and

1

c2
∂2A

∂t2
−∇2A =

1

c
j, (1.19)

which are general (inhomogeneous) wave equations. In the
absence of charges or currents (ρ = j = 0), the solutions
include the familiar electromagnetic plane waves.

We shall now consider the general case of the potentials
due to time-dependent charge and current distributions.
For simplicity, we will consider the scalar potential; the
derivation for the vector potential follows similarly. Begin-
ning from the inhomogeneous d’Alembert equation (1.18),
and maintaining the Lorenz Gauge condition, we have

∂2Φ(x, t) = ρ(x, t). (1.20)

Since this is a linear equation, the general solution can
be expressed as the sum of solutions due to charge dis-
tributions of separate infinitesimal pieces of space. As
such, we first consider just the solution due to a small

1I am using Heaviside-Lorentz units.
2If unfamiliar with the covariant form of Maxwell’s equations,

Eq. (1.19) may be derived directly from the 3-vector form of Maxwell’s
two inhomogeneous equations by expressing them in terms of the po-
tentials, and imposing the Lorenz condition.

point charge dq, located at position x0. We thus write
ρ(t,x) = dq(t)δ(x− x0), so that

∂2Φ = dq(t)δ(r), (1.21)

where we introduce the variable r ≡ x − x0, noting that
x0 is a constant (the t-dependence has been absorbed into
dq – I am imagining a constant region of space, with a
variable amount of charge in it). We shall solve this first
using the standard “textbook” method (“method of unde-
termined coefficients”, see Griffiths for example), and then
using the Fourier transform method.

1.3.1 Method of undetermined coefficients

Since we consider just a single point charge, the problem
has a clear spherical symmetry: Φ is a function only of
r = |r|. Everywhere except at r = 0, we have ∂2Φ = 0.
Writing the Laplacian in spherical coordinates:

1

c2
∂2Φ

∂t2
− 1

r2
∂

∂r

(
r2

∂Φ

∂r

)
= 0 for r ̸= 0,

and using the common trick of defining χ ≡ rΦ, we have:

1

c2
∂2χ

∂t2
− ∂2χ

∂r2
= 0 for r ̸= 0, (1.22)

which is exactly the one-dimensional wave equation, which
has periodic solutions of the form ei(ωt−kr), with k = ±ω/c.
In other words, solutions are of the form χ±(t − ±r/c).
Since we need just one particular solution, we take the pos-
itive case, and thus write χ = χ+(t− r/c), or

Φ =
χ+(t− r/c)

r
. (1.23)

We may determine the specific form of χ+, and thus Φ, by
asserting that Φ approaches the correct solution to (1.21) as
r → 0. Notice that, for periodic χ solutions, the potential
Φ → ∞ as r → 0 from Eq. (1.23). As such, close to r = 0,
the time derivatives in Eq. (1.21) are negligible compared
to the spatial derivatives, and the solution has the same
form as the static case we found in Eq. (1.10):

Φ(x)static =
1

4π

∫
ρ(x′)

r
.

Therefore, we have χ(t) = 1
4πdq(t), and

Φ(x, t) =
1

4π

dq(t− r/c)

r
. (1.24)

The extension to general charge distributions is clear:
write dq = ρdV , and integrate over the entire space:

Φr(x, t) =
1

4π

∫
ρ(x′, tr)

|x− x′| d
3r′, (1.25)

where tr = t − |x − x′|/c. The derivation for the other
components of the potential follow in exactly the same way,
resulting in

Aµ
r (x, t) =

1

4π c

∫
jµ(x′, tr)

|x− x′| d3x′, (1.26)

which is known as the retarded potential.
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1.3 Electrodynamics: retarded potentials

The retarded potential, Aµ
r , at position x and time t, is

thus understood to be generated by time-varying current
distributions located at position x′ and at the past time (or
retarded time) tr = t− |x− x′|/c.
As a final note, we point out that at Eq. (1.23), we

specifically chose the retarded solution, in which the po-
tentials at (x, t) depend on the sources at earlier times
tr = t − |x − x′|/c. This ensures that changes in the po-
tentials caused by changes in the charge and current distri-
butions propagate outward at the speed of light, encoding
causality. The retarded potentials thus make explicit the
locality encoded in the relativistic field theory.
One could, in principle, also construct the so-called ad-

vanced potential, which depend on sources at future times.
The d’Alembert equation is time symmetric, so it’s not
surprising we get both kinds of solutions. The retarded
potential is usually the useful one: given some distribution
of charges or currents in the past, we can determine the
potentials and fields they imply with the retarded solu-
tions. Since the theory is reversible, if we instead know
the “future” (or final states) of the charges, we can use the
advanced potential to work out the prior potentials that
would imply them.

We may also explicitly write down the retarded and ad-
vanced Green’s functions, which solve

∂2G(x− x′) = δ(4)(x− x′).

The two relevant solutions, the retarded (+) and advanced
(−) Green’s functions,

G±(x− x′) =
1

4π|x− x′|δ
(
t− t′ ∓ |x− x′|/c

)
. (1.27)

I don’t derive these explicitly in this case, though it can be
seen easily that these may be integrated with the source
term in Eq. (1.18) to produce the retarded and advanced
potentials, respectively. Note that since |x − x′| > 0, the
retarded Green’s function is non-zero only for times t > tr
(and converse for the advanced function).

1.3.2 Retarded (and advanced) Green’s functions:
Fourier method

Here, we shall again find the retarded (and advanced)
Green’s functions, this time using the method of Fourier
transforms and complex integration. Here, we will work
directly in the covariant form, and set c = 1, and use
unbolded symbols for four-vectors, with x = (t,x), and
x · y = xµy

µ.
Starting from the inhomogeneous d’Alembert equa-

tion (1.18), we associate the Green’s function:

∂2G = δ(4)(x− x′), (1.28)

with Fourier representation:

G(x− x′) =

∫
d4k

(2π)4
G̃(k)e−ik·x

(note the sign convention for the 4D Fourier transform).
Plugging through, we find

G̃(k) =
−1

k · k , (1.29)

Re(ω)

Im(ω)

|k|−|k|

Figure 1.1: Contour plot for the ω integral in Eq. (1.31), where
we have extended ω into the complex plane.

and taking the inverse Fourier transform:

G(x− x′) = −
∫

d4k

(2π)4
e−ik·x

k · k (1.30)

=
−1

2π

∫
d3k

(2π)3
eik·(x−x′)

∫
dω

e−iω(t−t′)

ω2 − k2 ,

(1.31)

where ω ≡ k0. We first try to evaluate the ω integral, by
extending into the complex plane and using the Cauchy
residue theorem.
Note that there are two simple poles, at ω = ±|k|, as

shown in Fig. 1.1. These are along the real axis, right
in the way of our contour. For the integral to converge,
we will have to shift the contour to avoid the poles. It is
not obvious that this is a remotely sensible thing to do;
this integral doesn’t converge, and contorting the contour
changes the value of the integral! However, at the end, we
can always check if what we have found is a valid solution
to the Green’s function equation (1.28), so for now we shall
steam ahead.
There are several choices for avoiding the poles: for ex-

ample, we can go above them (red contour in Fig. 1.1),
or below them (blue contour). Let’s first consider the red
“above” contour. For reasons that will become clear in a
moment, we shall consider two cases of t > t′ and t < t′ sep-
arately; the final solution is then the sum with appropriate
theta functions:

Gtotal = Gt>t′θ(t− t′) +Gt<t′θ(t
′ − t).

For t > t′, Jordan’s Lemma tells us the integral (1.31)
(∼ e−iω|δt|) goes to zero at infinity in the lower plane, so
we close the contour below. Both poles are enclosed, so we
find:∮

dω
e−iω(t−t′)

ω2 − k2 = −2πi

(
e−i|k|(t−t′) − ei|k|(t−t′)

2|k|

)

= −2π

|k| sin(|k|(t− t′)),

where the extra negative sign stems from this being the
clockwise contour. For t < t′, on the other hand, Jordan’s
Lemma tells us to close the contour in the upper plane, in
which neither pole is enclosed, and the integral is zero.
Therefore, we have:

Gr(x− x′) =

∫
d3k

(2π)3
eik·(x−x′) sin(|k|(t− t′))

|k| θ(t− t′).

(1.32)
The ‘r’ subscript is to remind us that this was the solu-
tion from choosing the ‘red’ contour; as we shall see in a
moment, we can also realise this is will be the retarded
Green’s function (note that is it nonzero only for “later”
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times t > t′). Writing k · (x − x′) = |k|r cos θ, with
r = |x− x′|, the integration over angles is performed simi-
larly to Eq. (1.15), and we find:

Gr(x− x′) =
θ(∆t)

π r

∫ ∞

0

d|k|
2π

sin(|k|r) sin(|k|∆t). (1.33)

Expanding the sin functions using Euler’s formula, and
making the change of variables |k| → −|k| for two of the
terms (allowing us to extend the integral to ±∞), we find

Gr(x− x′) =
θ(∆t)

4π r

∫ ∞

−∞

d|k|
2π

[
ei|k|(∆t−r) − ei|k|(∆t+r)

]
.

(1.34)
The integrals are just the Fourier representation of the 1D
delta functions, and only the first survives (since ∆t > 0,
enforced by the θ term, and r > 0 by definition). As such,
we finally find:

Gr(x− x′) =
1

4π r
δ(t− t′ − r), (1.35)

which is the retarded Green’s function (we dropped the θ
term, since the delta function, which implies t = t′ + r,
already forces ∆t = t− t′ > 0).

In exactly the same way, if we choose the blue “lower”
contour, we would find the advanced Green’s function:

Ga(x− x′) =
1

4π r
δ(t− t′ + r). (1.36)

These can be integrated with the source term in the in-
homogeneous d’Alembert equation (1.18) to immediately
yield the advanced and retarded potentials.
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