
SMP git and github workshop

https://github.com/benroberts999/git-workshop

Ben Roberts
https://broberts.io/teaching 1

https://github.com/benroberts999/git-workshop
https://broberts.io/teaching

2

3

xkcd.com/1597/

● Version control
○ Snapshots (entire project), called “commits”
○ Stores diff/delta only: great for plain text
○ Easily re-wind, backtrace errors

● Branching
○ Simultaneous development
○ Edit code without impacting working code
○ Merge into main branch when working

● Remote synchronisation
○ Share and store code remotely
○ Allows collaboration
○ Github: website to host projects “repositories”

● Somewhat steep learning curve
○ Ugly interface: can wrote learn, but
○ Basic understanding helps immensely
○ Interactive workshop

git

4

Git: basics
● Snapshots of entire project: commits
● Commit: what, who, why
● Graph: commits are nodes
● HEAD is current node
● Branch (give name to nodes)
● Remote

5

● Commit contains:
○ Data (form of a diff)
○ Author
○ Message
○ Parent(s) (preceding commits)
○ Id: hash of the data

Workshop Tasks

● Head over to: https://github.com/benroberts999/git-workshop

● Pre-work

● Make yourself a github user account https://github.com

● Install Visual Studio Code: https://code.visualstudio.com/

○ Install git (next slide)

● (optional) If you want to use the command line, set up ssh keys:

https://docs.github.com/en/authentication/connecting-to-github-with-ssh

6

https://github.com/benroberts999/git-workshop
https://github.com
https://code.visualstudio.com/
https://docs.github.com/en/authentication/connecting-to-github-with-ssh

Install git on windows (use vscode)

7

Install on mac: https://www.atlassian.com/git/tutorials/install-git
● Comes with Xcode, or install using brew, MacPorts, or from git-scm.com/

$ git config --global user.name "Emma Paris"
$ git config --global user.email "eparis@atlassian.com"

https://www.atlassian.com/git/tutorials/install-git
https://git-scm.com/

Extensions/tools

Valuable VSCode extensions:

● Git Graph
○ Show visible git graph =>

● GitLens
○ Many other nice/useful tools

8

https://marketplace.visualstudio.com/items?itemName=mhutchie.git-graph
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens

Summary of tasks
1. Fork + clone repo (or create new one)
2. Add some changes: commit
3. Push to github
4. Make changes on github, and pull them down
5. Create a new branch: make commits and swap between branches
6. Merge our branches

9

Fork and/or clone (1-2)

10

● Fork: copy repo to your github
● Clone: download git repo to your pc
● git clone git@github.com:benroberts999/git-workshop.git
● Or, GUI =>
● Or, initialise a new repo with ‘git init’
● DON’T put a git repo inside dropbox/onedrive etc.

Interlude: ssh keys

● To set up ssh keys for github:
https://docs.github.com/en/authentication/connecting-to-github-with-ssh

● If you use VSCode, you won’t need to do this
● To use command line, you will
● Generate a public/private key pair (if not already)
● Upload public key to github
● Be careful, follow above instructions

11

https://docs.github.com/en/authentication/connecting-to-github-with-ssh

Make and commit some changes (3-4)
● Use git diff to see your changes
● Stage and commit your changes

○ Git status
○ git add <...>
○ git commit -m <your commit message>
○ Or, commit using the source control tab in VSCode
○ See: https://www.gitkraken.com/learn/git/best-practices/git-commit-message

12

https://www.gitkraken.com/learn/git/best-practices/git-commit-message

Remote
● Concept of a “remote”

○ Synchronise changes
● Named: by convention/default: “origin”
● If pulled from github: already set up

● git remote -v
○ List remotes with URL

● git remote add <name> <url>
○ Adds a new remote

● We can push/pull changes to/from remote
○ Keeps them syncd

● https://www.atlassian.com/git/tutorials/syncing
13

https://www.atlassian.com/git/tutorials/syncing

Push changes up to your github (5)

● Push changes up to your github 'remote', and look at changes on github.com
○ git push origin main

● Check on github: see that the changes are there

14

Now, make a change on github (6-7)

● git status
○ it should say "up to date", because is doesn't know about the upstream changes

● git fetch
○ This will grab the info from ‘upstream’, but not download the changes

● git status
○ Now, it should say there are changes to be pulled

● git pull
○ We should now have those changes locally

15

Branch (8)
Make a new branch, check it out

* `git branch <branchname>`

* then: `git checkout <branchname>`

* Or: `git checkout -b <branchname>` (does both at same time)

Use `git branch` to list available branches

* Then make changes and commit them as before

* `git log` (or `git log --graph --oneline`)

16

Branch (8)

17

Or, use GUI:

Branch: push new branch
* push this branch up to github.com: `git push origin <branchname>`,

 or `git push --set-upstream origin <branchname>`

* Swap back/forth between branches:

`git checkout main`

`git checkout branchname`

18

Merge (9)
Three ways this can go:

● “Fast forward”
○ No changes on destination branch

● Merge
○ Non-conflicting changes on both branch
○ Creates a new “merge commit”

● Conflict
○ Changes could not be auto-merged
○ Manually fix/decide, create new commit
○ Use a good text editor like VSCode

19

Conflict (10)

If you are feeling brave: create a conflict

- change (+commit) same part of a document on both branches before merging

20

Whiteboard Drawings

21

Whiteboard Drawings

22

^ “Fast forward”

<= Merge commit

