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1 Classical Mechanics [April 19, 2023]

This set of notes should best be thought of as a companion to a good textbook, and is by no
means complete. Some prior knowledge is assumed, including a basic knowledge of calculus, and
some familiarity with elementary concepts of mechanics (meaning of forces, energy, coordinates
etc.). I recommend the books:

• H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, 3rd ed. (Addison Wesley, 2001). One
of the standards, for good reason; very solid and thorough coverage.

• L. Susskind and G. Hrabovsky, Classical Mechanics: The Theoretical Minimum (Penguin, 2014).
Not exactly a textbook, not exactly a popular science book; somewhere in between. An enjoyable
read at an introductory level.

• L. D. Landau and E. M. Lifshitz, Mechanics (L&L Vol. 1) (Pergamon, Oxford, 1976). An older
and technical book. A very elegant coverage of classical mechanics, that heavily influenced these
notes. More appropriate at a slightly more advanced level.
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1.1 Principles of classical mechanics

The aim of classical mechanics is to describe physical systems, and determine their evolution
through time. In other words, it is to predict the future. At the core of classical mechanics are
three basic assumptions:

1. Mechanical systems are deterministic,

2. The universe is homogeneous and isotropic,

3. Laws of physics are the same in all (Galilean) inertial reference frames.

A system is deterministic if, given enough information, it is possible (at least in theory) to
completely determine its future, i.e., to the specify the evolution of the system through time.
Similarly, a system is considered reversible if the same holds in reverse, and we can completely
determine its past; we shall soon see that this follows from the assumptions of determinism
and homogeneity. The assumption that the universe is homogeneous means that the laws of
nature do not depend explicitly on position, or in other words, there is no preferred location
in space. We also assume the universe is homogeneous in time, meaning the laws of nature
do not depend explicitly on time; this is usually wrapped into the homogeneity assumption.
The assumption that the universe is isotropic means that the laws of nature do not depend
explicitly on orientation, or that there is no preferred direction in space. The third assumption
is more subtle, we will return to it later.
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Figure 1: Two valid (deterministic and reversible) configuration paths, and one invalid path. (These
are not meant to be realistic, just illustrative.)

We will focus most of our discussion on the dynamics of particles. By particle, we mean
a body whose shape and dimension can be neglected in describing its motion.1 To define a
system of particles in regular 3-dimensional space, we may designate each of their locations
with a position vector, x, with Cartesian coordinates x, y, z. For a system of N particles,
there are 3N independent coordinate variables (called the degrees of freedom). To describe
the motion of particles, we also consider the rate of change of position, called velocity, which
we denote v ≡ ẋ ≡ d

dt
x. We may also consider the rate of change of velocity (acceleration),

a = ẍ, and so on. As we shall see, however, the accelerations will be determined if we know
the set of 3N coordinates {xi}, the set of 3N velocities {ẋi}, and some function which defines
the physical laws of the system, known as a potential function V ({xi}, {ẋi}), the meaning of
which will be discussed in the coming sections. The central determinism assumption of classical
mechanics is that this information completely specifies the system of particles. If we know the
6N coordinate/velocity variables at any moment in time (called the state of the mechanical
system), then we may determine the state of the system at any point in the future, assuming
the potential function is known. Further, from the reversibility assumption, it also means we
can determine the state at any point in the past. The set of equations that specifies the relations
for the coordinates and velocities of the system are called the equations of motion. We shall
soon see that these are, in general, a set of second-order differential equations.

For general problems, the set of coordinates may not be the Cartesian coordinates; in
many situations, a different choice may be much more convenient. Any set of M quantities
(q1, q2, . . . qM) which completely defines the configuration of a system with M degrees of free-
dom are called the generalised coordinates of the system. It is possible that M ̸= 3N , for
example, when there are constraints on the motions of the system; this will be easier to discuss
when the examples arise in the coming sections. Likewise, the set of their derivatives, {q̇i}, are
the generalised velocities.

We may consider the phase space of generalised positions and velocities.2 We can then
imagine the physical system tracing some path through this phase space as time progresses.
The central assumptions of determinism and reversibility imply that paths in this phase space
may not cross. If they could cross, then there would be two possible “futures” (or pasts) from
the crossing point, which is not allowed, see Fig. 1. Though the paths cannot cross, it is
completely possible to have closed cycles in the phase space. As we shall investigate further
in the coming sections, the emergence of closed cycles implies some conservation law – i.e., it
implies that there is some quantity (generally, some function of qs and q̇s) that remains constant
throughout the evolution of the system.

1More complicated systems can always be considered as complex arrangements of particles.
2Usually, the term phase space actually refers to the space of generalised positions q and momentums p,

rather than velocities. For our arguments here, it makes no difference. We will return the concept of generalised
momentum in the coming sections.
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As a final note before we begin the study proper, we mention that the specific set of coor-
dinates chosen (called a reference frame) is not unique. We can always change reference frames
by shifting or rotating our coordinate axis: x → x′. We may also make more general coordinate
transforms that depend on time. For example, consider reference frames K and K ′, specified by
coordinates x and x′ respectively, where K ′ moves relative to K with velocity V . The relation
is:

x → x′ = x− V t

t → t′ = t.
(1)

These equations define what is called a Galilean transformation. Reference frames that are
linked by Galilean transformations are considered inertial frames.3 While there is no absolute
frame of reference for coordinates, time is an absolute. The constancy of time between frames
of reference is of one of the central assumptions in classical mechanics, though does not hold
in relativistic mechanics (relativity is not considered in these notes).

1.2 Principle of least action

The aim of classical mechanics is to describe the evolution of a system, described by the set of
generalised coordinates {qi}, and their derivatives {q̇i}. We invoke the first of our assumptions
(determinism), and presume that there is a unique equation that describes this evolution.

It seems reasonable to assume that the path the system will take will be optimal, with
respect to some quantity. For example, we might guess that particles would take the shortest
path (i.e., optimal with respect to length). It doesn’t take much experimentation, however, to
see that this is not the case (think of throwing a ball in the air – it certainly doesn’t take the
shortest path to its destination).

We call the function that should be minimised (or more generally, optimised), the action,
denoted S. The action is itself typically written as the integral of another function, called the
Lagrangian, L:

S =

∫ tf

t0

L(q, q̇, t) dt. (2)

We may consider this simply convention.4 The task to completely specify the dynamics of the
system, then, is to find the set of functions qi(t), which minimise the action5. This is called
the principle of least action, or Hamilton’s principle.

We shall now show how to derive the set of differential equations that will determine these
paths. For simplicity, we will work in the case of a single particle, so there is only one function,
q(t), that we must find, and generalise to a system of particles later.

Suppose q(t) is the function which minimises the action. Define another path between the
same initial and final points

q̃(t) = q(t) + δq(t), (3)

where δq (called a variation) is a small shift in the path, subject to the constraint q̃(t0) = q(t0),
and q̃(tf ) = q(tf ). In other words,

δq(t0) = δq(tf ) = 0. (4)

3More concretely, an inertial frame is one in which free particles do not accelerate.
4This can be linked to locality arguments; the action S, is not a local function, in that it depends on the

entirety of the path taken. The Lagrangian, L, on the other hand, is a local function of time.
5Technically, we seek an extremum (stationary point), which may be minimum or maximum.
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Figure 2: Path that minimises the action, q(t), and its variation, δq(t).

The resulting variation in S is

δS ≡ S(q + δq)− S(q) (5)

=

∫ tf

t0

L(q + δq, q̇ + δq̇, t) dt−
∫ tf

t0

L(q, q̇, t) dt, (6)

where δq̇ = d(δq)/dt. We take δq to be an infinitesimal variation, and expand δS to first-order
in δq.6 For S to be a minimum, this variation must vanish:

δS =

∫ tf

t0

(
∂L

∂q
δq +

∂L

∂q̇
δq̇

)
dt = 0. (7)

Using integration by parts for the second term, we have

δS =

∫ tf

t0

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δq(t) dt+

∂L

∂q̇
δq̇
∣∣∣tf
t0
= 0. (8)

From Eq. (4), the integrated term is zero. The remaining term must be zero for all functions
δq, implying the integrand must be zero:

d

dt

∂L

∂q̇
=

∂L

∂q
. (9)

For the case of N particles, the trajectory of each particle satisfies this equation:

d

dt

∂L

∂q̇i
=

∂L

∂qi
(i = 1, 2, . . . , N), (10)

where the Lagrangian is, in general, a function of all coordinates, velocities, and time. These are
called the Euler-Lagrange equations. If the Lagrangian of a system is known, these equations
define the path taken by particles in the system, and give the equations of motion. We remind
that, so-far, we have said nothing about what the Lagrangian actually is.

As a final note, consider what happens when we add a term to the Lagrangian that is a
total time derivative of some function of coordinates and time:

L(q, q̇, t) → L′(q, q̇, t) = L(q, q̇, t) +
d

dt
f(q, t). (11)

6This is an application of the calculus of variations; the formulas follow from the definition of the derivative,
and the chain rule. If you’re unsure, refer to the appendix in Sec. 1.9.
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Notice that the action (2) simply changes by a constant term:

S ′ = S +

∫ tf

t0

df

dt
dt = S + f

∣∣∣tf
t0
. (12)

The constant doesn’t change the condition for a minimum (δS = 0 and δS ′ = 0 are equivalent).
Therefore, the addition of such a term cannot impact the dynamics of the system, and so the
Lagrangian is defined only up to the addition of a total time derivative of any function f(q, t).

1.3 The Lagrangian

We shall now consider the form the Lagrangian must take (at least, for particles in an inertial
reference frame), resting entirely on a few intuitive assumptions about nature. To do this, we
shall invoke our next assumption: that the universe is homogeneous and isotropic.

We first consider the case of a single free particle. The homogeneity of space and time
implies that there can be no explicit position x or time t dependence in the Lagrangian. The
Lagrangian must therefore be a function of velocity ẋ. Further, the isotropy of space means the
Lagrangian must also be independent of the direction, and must therefore be only a function
of its magnitude, ẋ2 = v2:

L = L(v2). (13)

The Euler-Lagrange equations (10) are particularly simple in this case,7

d

dt

(
∂L

∂v

)
= 0, (14)

since the Lagrangian is independent of x so we have ∂L/∂x = 0. From this, we see that ∂L/∂v
is a constant. Since L is a function only of ẋ, this implies the velocity is constant:

d

dt
v = 0. (15)

In other words, in the absence of any potential terms, the velocity of a particle must stay
constant. This is the law of inertia (or Newton’s first law). It’s important to note that we have
made only the barest of assumptions to arrive at this conclusion: namely that physical systems
are deterministic, the dynamics is such that some function (which we called the action) was
optimised, and that the universe is homogeneous and isotropic.

We so far have determined that the Lagrangian for a free particle must be a function of the
magnitude of the velocity only. To go further, we make one more assumption; that coordinates
change according to Galilean transformations (1) when changing between inertial reference
frames8, and that the equations of motion have the same form in every inertial frame. Consider
two frames of reference, moving relative to each other by infinitesimal velocity δv, such that
v′ = v+δv. Under our assumptions, L′ = L(v′2) must differ from L(v2) by at most a total time
derivative. We have, neglecting (δv)2 terms, L(v′2) = L(v2 + 2δv · v), which can be expanded
as

L(v′2) = L(v2) +
∂L

∂(v2)
2δv · v. (16)

7The derivative of a scalar with respect to a vector may be defined dϕ/da ≡
∑

i(dϕ/dai)êi, where êi is the
unit vector parallel to the i component of a. The special case of spatial derivatives is called the gradient, or
‘grad’ and is written dϕ/dx ≡ ∇ϕ.

8This final assumption does not hold in relativistic mechanics.
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The equations of motion will remain unchanged only if the final term of this equation is zero
(evidently it is not), or if it’s a total time derivative, as we saw in Eq. (12). This term is a total
time derivative only if it is linear in v (since v = ẋ), and so ∂L/∂(v2) must be independent of
velocity. We arbitrarily set ∂L/∂(v2) = m/2 and integrate to find

L =
1

2
mv2. (17)

Any integration constant will not affect the equations of motion, and can be discarded. The
factor of m/2 is arbitrary so far, but we will call m mass. For a single free particle, the mass
has no physical significance. However, for a system of particles, each may have a different mass,
and the ratios will be physically meaningful (particularly as we discuss forces below).

We note that we did not explicitly invoke the assumption of reversibility. Since the La-
grangian does not depend explicitly on t, it follows that the equations of motion remain the
same on substitution t′ = −t. In this sense, the reversibility follows from homogeneity.

Notice that, in this free particle case, we have

∂L

∂ẋ
= mv, (18)

which you will recognise as momentum. We will generalise this now, because it will turn out to
be a very useful construction. If the system is defined by a generalised coordinates {qi}, then
we can define a canonical momentum

pi ≡
∂L

∂q̇
, (19)

which is also called the generalised momentum, or the momentum conjugate to q. In general,
this quantity is not simply mv. With this, the Euler-Lagrange equations may be written:

dpi
dt

=
∂L

∂qi
. (20)

This is just a definition for now; we will return to this in our discussion of symmetries.
We will now consider a closed system of several particles. By closed, we mean that nothing

outside the considered system may impact its dynamics. In this case, the strict homogene-
ity/isotropy for each particle is broken, by the presence of the other particles. Therefore, and
extra term may appear in the Lagrangian, that may depend on the positions and velocities of
all the particles. We’ll call it the potential, V :

L =
∑
i

1

2
miv

2
i − V (x1,x2, . . . ,v1,v2, . . .), (21)

where the choice of negative sign is arbitrary. For simplicity, we’ll directly consider the case for
two particles; the arguments will hold generally. The equations of motion can be determined
from an application of Eq. (10). In this case, the equation of motion for the ith particle is

miai = − ∂V

∂xi

, (22)

which you will recognise as Newton’s second law. We’ll call the derivative term on the right-
hand-side the force on the ith particle. This justifies our choice for the definition of the mass
constant, m.

While the homogeneity for each particle is broken, the overall homogeneity and isotropy
assumptions still hold for the system on a whole. Therefore, as before, there may be no explicit
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Figure 3: A small mass, free to slide inside a spherical bowl.

time dependence in the new potential term (it may depend implicitly on time through the
time-dependence of the positions). Further, for the overall homogeneity/isotropy assumptions
to hold, there can be no explicit position dependence in the potential term, besides the relative
positions between particles. That is, the only position dependence allowed in V comes in the
form of differences:

V (x1,x2, . . .) = V (x1 − x2, . . .). (23)

From this, without knowing anything else about about the form of V , we immediately see that
(in the case of a pair of particles), we have

∂V

∂x1

= − ∂V

∂x2

. (24)

This states that forces between particles come in pairs, which are equal in magnitude and
opposite in direction; you will recognise this as Newton’s third law, which we see is a direct
consequence of the homogeneity of space. We can rest assured that our formulation of mechanics
encodes Newton’s laws of motion.

As a matter of definition, if a Lagrangian can be broken into terms which are proportional to
q̇2, we’ll call those terms the kinetic energy, and remaining terms the (negative of the) potential
energy. The choice of these terms is clear from the link to Newton’s equations of motion, even
if we haven’t formally defined energy in the context of Lagrangian mechanics yet. In such cases,
we write:

L = T − V, (25)

where the kinetic energy is T = (1/2)
∑

imiq̇
2
i , and V is the potential energy.

As a final remark, you might wonder if we can continue making such arguments to work
out an explicit form the V in the same way as we did for a system of free particles. The answer
is we cannot, at least not without introducing new assumptions. The form that V takes will
be called a (classical) physical theory; any physical theory that obeys the above assumptions is
equally valid, and it is up to experiment to determine which is the correct description of nature.

1.3.1 Elementary examples

As a simple example showing to power of generalised coordinates, consider a small particle of
mass m, which is free to slide without friction inside a spherical bowl of radius R as shown in
Fig. 3. The bowl in centred at (x, y, z) = (0, 0, 0), and the z-direction is taken directly upwards.
Since the mass is confined to sit on the curved plane of the bowl, we can use its two-dimensional
position on this plane to specify its location. Specifically, instead of the three coordinates x, y
and z, we can use two generalised coordinates, θ (the angle defined such that z = R−R cos θ,
x = R sin θ), and ϕ (the angular position in the x-y plane). Further, under the assumption that
there is no initial velocity in the y direction, under the rotational symmetry, we can further
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confine the particle to lie in the x-z plane, meaning its position may be completely specified
only by θ. The kinetic energy of the particle is

T =
1

2
m(ẋ2 + ż2) =

mR2

2
θ̇2, (26)

and if the potential energy is due to gravity, it is:

V = mgz = mgR(1− cos θ). (27)

The Euler-Lagrange equation is thus

θ̈ = − g

R
sin θ. (28)

As you can see, it is much simpler to solve these equations using the generalised coordinates
than using Cartesian coordinates.

As an aside, if we make the further assumption that the angle be kept small such that
sin θ ≈ θ, you will recognise the result at the equation for simple harmonic motion. The
solution in that case is sinusoidal oscillations in the displacement. Substituting for x, the
equation becomes ẍ = −(g/R)x, with solution

x = x0 cos(
√

g/R t). (29)

This gives the famous formula for the period of oscillation of an idealised pendulum: T =
2π
√

R/g.

1.4 Symmetries and conservation laws

In the above, we considered closed systems of particles. That is, systems where anything (all
the particles and interactions) that could impact the motion of the particles was included
in the system. The mechanisms of classical mechanics are such that they can be applied in
more general situations; we often can consider some subset of a larger system as “the system”,
and consider the effect of the excluded particles as some “external” field (or interaction more
generally). For example, when determining the orbital dynamics of the earth around the sun,
we don’t need to consider the effect the earth has on the sun (at least to first order). So the
gravitational force of the sun on the earth can be taken as an external field. It’s important to
realise that, in such situations, the assumptions of homogeneity and isotropy no longer hold.
In reality, such situations are almost always approximations, since there will be some back
reaction on whatever is producing the external interactions. If we included everything into
the system, these symmetries would be restored. The art of classical mechanics is to make
reasonable assumptions about what must be considered internal or external to the system.

One concept that is extremely important in physics of all kinds, is that of conservation
laws. As a mechanical system evolves in time, there may exist some function of the generalised
coordinates q and q̇ that remains constant throughout the motion, and depend only on the
initial conditions. Such functions are known as constants of the motion, or integrals of the
motion, or simply as conserved quantities. In this section, we will investigate the profound link
between symmetries and conserved quantities.

A transformation is any change we can make to a system. They are usually defined through
mathematical operations on the system or set of chosen variables. We will focus on continuous
transformations, and in particular on coordinate transformations, but most of the logic holds
for more general cases. A transformation is considered a symmetry if it leaves the dynamics
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unchanged. To prove this, it suffices to show that it leaves the Lagrangian unchanged (up to the
addition of a total time derivative). As we shall see, it is a general rule that for any symmetry
in a physical system, there is a corresponding quantity that is conserved. This is Noether’s
theorem. We will first consider a few important cases, and then show this for the general case.

1.4.1 Translation symmetry: momentum conservation

The first transformation we consider is a translation. We make a coordinate change which shifts
all the coordinates by some constant:

x → x′ = x+ ϵ. (30)

The epsilon is to make explicit that we consider an infinitesimal shift. It suffices to consider
infinitesimal translations, as any finite translation can be built up from many repeated in-
finitesimal ones – this is the assertion that translation is a continuous transformation. The
corresponding change in the Lagrangian

δL =
∑
i

∂L

∂xi

· δxi =
∑
i

∂L

∂xi

· ϵ. (31)

If this translation is a symmetry, then δL = 0. Since ϵ is a arbitrary, we have∑
i

∂L

∂xi

= 0,

and so the Euler-Lagrange equations become:

d

dt

(∑ ∂L

∂ẋi

)
≡ d

dt

(∑
pi

)
= 0, (32)

where we used the definition of canonical momentum (19). For a free particle (or any particle
where the potential is independent of velocity), pi = mvi is the usual mechanical momentum.
Since the time derivative of momentum is zero, it is conserved. As we saw above, this is clearly
a symmetry for a closed system, which shows that the total momentum is conserved for a closed
system. This also follows from the combination of Newtons second and third laws, which we
saw above. It’s also clearly true in the case that the potential does not depend on position,
∂V/∂x = 0. We can summarise this as: translation symmetry implies momentum conservation.

1.4.2 Time-translation symmetry: energy conservation

We now consider a translation in time:

t → t′ = t+ ϵ. (33)

The corresponding change in the Lagrangian is

δL =
∂L

∂t
ϵ (34)

The condition for this to be a symmetry is δL = 0. Therefore, time translation is a symmetry
if there is no explicit time dependence in the Lagrangian.
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To investigate this, consider the total time derivative of the Lagrangian:

dL

dt
=
∑
i

(
∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i

)
+

∂L

∂t
(35)

=
∑
i

(
dp

dt
q̇i + ṗiq̈i

)
+

∂L

∂t
(36)

=
d

dt

(∑
i

piq̇i

)
+

∂L

∂t
, (37)

where we used the Euler-Lagrange equations (20) to replace ∂L/∂q, and the canonical mo-
mentum (19) to replace ∂L/∂q̇. We define a new quantity, called the Hamiltonian (or the
energy):

H ≡
∑
i

piq̇i − L. (38)

With this definition, the above equation reads:

dH

dt
= −∂L

∂t
. (39)

We this see that the Hamiltonian (or the energy) is conserved if the Lagrangian has no explicit
time dependence, which from Eq. (34), is implied if there is time translation symmetry.

The homogeneity of time implies energy is conserved for all closed systems. Further, the
above shows that energy is conserved any time the potential V is independent of time (since
these will be invariant under time translations).

In the case where the Lagrangian is simple L = T − V , where T is a quadratic function
in q̇, the Hamiltonian is seen to be H = T + V . Therefore, we can recognise T as the kinetic
and V as the potential energies. Note that for more complicated Lagrangians, it is not always
simple or even possible to separate the energy terms into kinetic and potential contributions;
still, Eq. (38) defines the link between the Lagrangian and the Hamiltonian.

1.4.3 Rotation symmetry: angular momentum conservation

The final explicit example we shall consider is a rotational translation about an axis. For now,
let’s consider an infinitesimal rotation around the z axis. It’s a quick geometry exercise to see
that the changes in the x and y coordinates are:

δx = −δθ y, δy = δθ x, (40)

see Fig. 4. The generalisation is the cross-product

δr = δθ × r, (41)

where δθ is a vector with magnitude δθ that points along the axis of rotation. Notice that
directions, not just positions, change with this transformation. We therefore must also update
the velocity vectors, which change in the same way9:

δv = δθ × v. (42)

9Since v = ẋ, δv = δ(ẋ), and δθ is independent of time.
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Figure 4: Small rotation, ϵ, about the z-axis.

The corresponding change in the Lagrangian is

δL =
∑
i

(
∂L

∂ri

· δri +
∂L

∂vi

· δvi

)
(43)

=
∑
i

[ṗi · (δθ × ri) + pi · (δθ × vi)] (44)

= δθ · d

dt

∑
i

ri × pi, (45)

where we used the Euler-Lagrange equations, and the permutation properties of the cross-
product. Therefore, the condition that the rotation is a symmetry (δL = 0), implies that term
om the right-hand-side r × p is a constant. We call this quantity angular momentum:

l = r × p (46)

(some places use L or M ). Rotational symmetry about an axis i implies the i-component of
angular momentum is conserved.

1.4.4 General symmetries

In the general case, we define an infinitesimal transformation that may itself be a function of
coordinates:

δqi = fi(q)ϵ. (47)

In general, the velocities will also change under the transformation:

δq̇i =
d

dt
(δqi). (48)

The general change in the Lagnrangian is then

δL =
∑
i

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)
=
∑
i

(ṗiδqi + piδq̇i) (49)

=
d

dt

∑
i

piδqi, (50)

where we used Eqs. (19) and (20) in the first line, and the product rule for differentiation in
the second. If the transformation is a symmetry, i.e., if δL = 0, then the time derivative of the
term on the right-hand-side is zero, and thus this term is conserved.

11
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We can re-state this general result more concretly. If a transformation δqi = fi(q)ϵ leaves
the Lagrangian unchanged, δL = 0, then:

δL(f) = 0 =⇒ d

dt
Q = 0, (51)

where Q ≡
∑
i

pifi(q), (52)

which is a statements of Noether’s theorem. Notice the small parameter ϵ is not included in
the definition of Q.

1.5 Hamiltonian formulation

In Eq. (38), we defined the Hamiltonian, which is a function of qs and ps. As we shall now see,
this quantity is very important, and leads to a new formulation of the equations of motion.

To see this, consider a small variation in H from Eq. (38)

δH =
∑
i

(piδq̇i + δpiq̇i)− δL (53)

=
∑
i

(
piδq̇i + δpiq̇i −

∂L

∂qi
δqi −

∂L

∂q̇i
δq̇i

)
(54)

=
∑
i

(���piδq̇i + δpiq̇i − ṗiδqi −�
��piδq̇i) (55)

where we used L = L({q}, {q̇}), and the Euler-Lagrange equations. At the same time, we have

δH =
∑
i

(
∂H

∂qi
δqi +

∂H

∂pi
δpi

)
, (56)

which holds for any general function of qs and ps. Equations (55) and (56) are equivalent.
Equating these, and matching terms, we find

q̇i =
∂H

∂pi
, and ṗi = −∂H

∂qi
, (57)

which are Hamilton’s equations of motion; it’s interesting to note the near symmetry between
the equations for q and p.

This way of writing to equations of motion is called Hamilton’s formulation of classical
mechanics. Compared to the Euler-Lagrange equations of motion, we now have twice as many
equations, however, they are each first-order differential equations, rather than second-order.
In particular, certain problems become much simpler to solve in the Hamiltonian formulation.
This formulation also lends itself naturally to thinking about problems in the {(p, q)} phase-
space, rather than the coordinate space {q}, as was hinted at in the introduction. This is often
a very powerful and insightful way of treating problems.

1.6 Harmonic Oscillator

Consider a Lagrangian of the form

L =
mẋ2

2
− k

2
x2, (58)

12
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Figure 5: Simple harmonic oscillator tracing closed paths in phase space. Each path is for a constant
energy. Each point on the plot corresponds to a possible set of (q0, p0) initial conditions; from there,
a concentric circle will be traced.

which (as we’ll see) corresponds to a classical harmonic oscillator, with x being the displacement
from the equilibrium, and k being the spring constant. It’s not too difficult to check that if
we make the change of variables q = (mk)1/4x and define ω =

√
k/m, then the form of the

Lagrangian becomes simpler:

L =
q̇2

2ω
− ω

2
q2. (59)

We may solve this by finding the Euler-Lagrange equations of motion:

q̈ = −ω2q. (60)

This differential equation is easy enough to solve; it implies sinusoidal motion about q = 0,
with angular frequency ω. The amplitude and phase are determined by the initial conditions.
Since this is a second-order equation, we require two initial conditions, q0 and q̇0.

This is also a good example for the simplicity offered by the Hamiltonian formulation. The
Hamiltonian can be found simply from Eq. (38):

H =
ω

2
(p2 + q2). (61)

Note that momentum is not conserved in this example, though the Hamiltonian formulation
makes it plain that energy is. Then, the Hamiltonian equations of motion are:

q̇ = ωp, and ṗ = −ωq. (62)

It’s easy to verify that these are equivalent to the Euler-Lagrange version by taking the time
derivative of the first equation. But Hamilton’s formulation makes the dynamics for p clear.

Since the energy is constant, Eq. (61) immediately tells us that the solutions in (q, p) phase
space plot out concentric circles, with the “radius” of the circle corresponding to the energy,
as shown in Fig. 5. The solution to the differential equations are also sinusoidal, and it can be
seen that, not only does q oscillate around q = 0, but p oscillates around p = 0, with the same
angular frequency ω.

1.7 Poisson brackets

Let f(p, q, t) be any function of coordinates, momentum, and time. The total time derivative
of f can be written as

ḟ =
∂f

∂t
+
∑
i

(
∂f

∂qi
q̇i +

∂f

∂pi
ṗi

)
, (63)

13
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which from Hamilton’s equations, can be expressed:

ḟ =
∂f

∂t
+
∑
i

(
∂f

∂qi

∂H

∂pi
− ∂g

∂pi

∂H

∂qi

)
. (64)

The construction on the right-hand-side proves to be useful so we designate it as a Poisson
bracket, defined generally:

[f, g] ≡
∑
i

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (65)

In this case, time derivatives can be expressed:

ḟ =
∂f

∂t
+ [f,H]. (66)

When it is not clear from context which variables are used for the derivatives, these are given
as subscripts. For example, the above (65) would be [f, g]qp. Generally:

[f, g]uv ≡
∑
i

(
∂f

∂ui

∂g

∂vi
− ∂f

∂vi

∂g

∂ui

)
. (67)

Clearly, the Poisson bracket is asymmetric: [A,B] = −[B,A]. It’s also fairly clear to show
the linearity properties:

[λA,B] = λ[A,B], and [A+D,C] = [A,C] + [D,C]. (68)

Also, from the product rule, we have:

[AB,C] = A[B,C] + [A,C]B. (69)

Finally, the Poisson brackets of the canonical variables are

[qi, qj] = 0, [pi, pj] = 0, [pi, qj] = δij. (70)

The above set of equations are in fact enough to define the Poisson bracket, and can be thought
of as a set of axioms.

The Poisson bracket proves a useful tool in many situations. Hamilton’s equations can be
readily expressed in this form.

q̇i = [qi, H], ṗi = [pi, H]. (71)

When one of the functions is one of the canonical variables, the Poisson bracket becomes a
partial derivative with respect to the other:

[f, qi] = − ∂f

∂pk
, [f, pi] =

∂f

∂qk
(72)

These can all be proven without much effort.
There are many useful properties of Poisson brackets. One of particular importance is

Jacobi’s identity:
[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0. (73)

An important property of the Poisson bracket is that, if f and g are conserved quantities (i.e.,
they are constants of the motion), then so is [f, g]. This is called Poisson’s theorem, which can
be proven by setting h = H in Jacobi’s identity.

As an aside, if you have studied quantum mechanics, you may have noticed that the classical
Hamilton’s equations (71) look identical to Heisenberg’s quantum equations of motion. This
is not simply a coincidence. It will be the case that the quantum version of Poisson brackets
become the commutation relations.

14
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1.8 Generators of transformations

Back in Eq. (40), we considered a small rotation of δθ about the z-axis, and saw the corre-
sponding change in x, y, z was δx = −δθy, δy = δθx, δz = 0. We saw that, if the system was
symmetric with respect to rotation around z, then the z-component of angular momentum,
lz = xpy − ypx, was conserved. It’s instructive to take the Poisson bracket of the coordinates
with respect to the conserved lz

[x, lz] = −y, [y, lz] = x, [z, lz] = 0. (74)

Notice that this can be written:

δθ[x, lz] = δx, δθ[y, lz] = δy, δθ[z, lz] = δz. (75)

In other words, the Poisson bracket of coordinates with lz give the expressions for the change
in those coordinates due to a rotation around the z axis (up to the factor ϵ). This of course
generalises to rotations about an arbitrary axis. If we instead rotate with δr = δθ × r as in
Eq. (41),10

[xi, lj] =
∑
k

ϵijkxk. (76)

In this sense, we can call the angular momentum vector the generator of rotations. Also, for
the momentum, we similarly have:

[pi, lj] =
∑
k

ϵijkpk. (77)

This is the same, since momentum vectors transform under rotations the same way as positions.
The change in any quantity, f , about the i-axis may be written:

δf = [F,Li]. (78)

This holds rather generally. Above, we saw that invariance under spatial translations implied
momentum conservation. Consider, then, the Poisson bracket of any function position with p

[f(q), p] =
df

dq
. (79)

Since the change in f under the transformation q → q + ϵ is df
dq
ϵ, we have

δf = ϵ[f, p]. (80)

We may recognise momentum as the generator of spatial translations. Doing the same with
time translation will show that the Hamiltonian is the generator of time translations.

We may generalise this. Let G(q, p) be a general function of generalised coordinates and
momentum, defined such that it gives small changes to coordinates

δqi = [qi, G], and δpi = [pi, G]. (81)

This transformation may or may not be a symmetry. If it is a symmetry, then, by definition,
it cannot change the energy of the system, so δH = 0. In other words, the condition that G
represents a symmetry is

[H,G] = 0. (82)

We could also write this the other way:

[G,H] = 0, (83)

which, since H is the generator of time translations, tells us that G is constant.

10ϵijk is the entirely asymmetric Levi-Civita symbol. It is zero if any of the indices repeat, is +1 for any
even permutation of (123), and -1 for any odd permutation. The cross-product a × b = c can be expressed
ci =

∑
jk ajbkϵijk.
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1.9 Appendix: Calculus of variations

The definition of the derivative for some function f(y) may be stated:

df

dy
≡ lim

∆y→0

∆f

∆y
. (84)

where ∆f ≡ f(y + ∆y) − f(y). For infinitesimal changes, we write ∆f → δf , and ∆y → δy,
and we can write:

δf ≡ df

dy
δy. (85)

If f is function of multiple variables x1, x2, etc., each of which may depend on y, i.e.: f(y) =
f(x1(y), x2(y), . . .), then, by the chain rule, we have

df

dy
=

∂f

∂x1

∂x1

∂y
+

∂f

∂x2

∂x2

∂y
+ . . . (86)

Combining Eqs. (85) and (86), we have

δf =
∂f

∂x1

∂x1

∂y
δy +

∂f

∂x2

∂x2

∂y
δy + . . . (87)

=
∂f

∂x1

δx1 +
∂f

∂x2

δx2 + . . . , (88)

which is the general formula for the variation in f .
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