
Lectures in physics B. M. Roberts – 08/07/2024

2 Classical Field Theory

This set of notes should be thought of as a companion to a good textbook, and
is by no means complete. They are designed to give a broad overview of the
most important topics in special relativity and classical field theory as briefly as
possible. Familiarity with classical mechanics is assumed, as is an elementary
understanding of vector calculus and electromagnetism. I recommend the books:

• L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (1971)

• D. J. Griffiths, Intoduction to Electrodynamics (1999)

• L. Susskind and A. Friedman, Special Relativity and Classical Field Theory (2014)

• J. D. Jackson, Classical Electrodynamics (2001)
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2.1 The Principle of Relativity

In our study of classical mechanics, we saw that interactions between particles
were described by means of potential functions, which depend on the relative
positions of particles in the system, V (x1 − x2). Such a description necessarily
leads to the conclusion of the instantaneous propagation of interaction between
particles: a change in the position of one particle immediately impacts the force
on another, even if separated by very large distances. Such instantaneous in-
teractions would appear to violate the concept of locality – that the motion of
a particle should depend only on its immediate surrounds. More importantly,
instantaneous interactions are shown by experimentation not to exist in nature.
Therefore, we conclude that there must be a finite “speed of propagation” of
interactions between bodies. In order to describe such propagation, as we shall
see, we require a field theory, whereby the fields which mediate such interactions
gain physical significance and should themselves follow equations of physical law.
The study of field theory will result in a rich field of physics. In particular, it is
required for a full (classical) description of electrodynamics, and will also form
the basis from which we can study quantum field theory.

In order to quantitatively study any physical processes, we require a reference
system, by which we mean a set of coordinates to keep track of the positions of
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particles, as well as time intervals between events. We also remind the reader
that there exist certain special reference frames, termed inertial reference frames,
in which free particles do not accelerate. A pair of inertial reference frames move
with respect to each other with constant velocity.

One of the key principles upon which classical mechanics was built was the
Galilean principle of relativity, which encodes the concept of invariance of physical
law between different inertial reference frames. One of the key properties of the
Galilean relativity is that time is considered absolute; all observers in all reference
frames share the identical time coordinate. At the same time, however, Maxwell’s
theory of electrodynamics implied that the speed of light (in vacuum), c, was a
consequence of physical law, and, by the principle of relativity, should therefore
be the same in all reference frames. The constancy of the speed of light has been
verified by many experiments, including the famous experiment of Michelson
and Morley. As we shall see, this observation is incompatible with the Galilean
principle of relativity.

We shall build field theory from the Einstein principle of relativity, which
shall supplant the Galilean principal of relativity:

1. The laws of physics are the same in all inertial reference frames,

2. The speed of light (in vacuum), c, is the same for all reference frames.

To see that these conditions are incompatible with the Galilean principle of rel-
ativity, consider two reference frames K and K ′, described by coordinates t and
x, and t′ and x′, respectively, where the K ′ system moves relative to K (along
the x axis) with speed v. The Galilean transformations linking the two reference
frames are

x′ = x− vt, t′ = t, (2.1)

where importantly, the time coordinate is considered universal and the same in
all frames. Under this transformation, the speed of light is clearly not the same
in both frames. If the path of a light ray in the K coordinates is x = ct, then in
K ′ it would be x′ = ct− vt = (c− v)t, so the ray moves with speed c− v.

Our first job, then, is to seek a set of transformations that will surpass the
Galilean transforms, and preserve the constancy of c. It turns out that it is not
possible to find such a transformation that leaves the concept of time universal
between reference frames. An important consequence of this is that events which
are simultaneous in one inertial reference frame may not be simultaneous in
another.

2.1.1 The relativity of simultaneity

We shall begin by considering the canonical example. Consider a pair of ob-
servers, A and B, moving together along the x-axis at constant speed v relative
to a stationary observer. We use coordinates t and x to label points as observed
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2.1 The Principle of Relativity

Figure 2.1: Space-time diagrams showing the relevant paths (world lines) in the co-
moving K′ frame, and the “stationary” K frame. The orange curves show the paths of
the light rays, the blue lines show the paths of A and B, and the dotted line shows the
path of the light source, S. The space-time point (event) of light emission is labelled s,
and the events of the light reaching A and B are labelled a and b. The red lines show
the K′ axes (x′ = 0 and t′ = 0).

in the “stationary” K frame, and coordinates t′ and x′ in the K ′ frame that is
co-moving with A and B. (Since there is no motion along the y or z axis, we need
not consider them.) Equidistant between A and B is a light source, S, which
moves along with them and emits a pulse of light:

We choose the origin of the coordinates in the each frame such that the light
pulse reaches A at time t = t′ = 0 and position x = x′ = 0. The co-moving K ′

frame is termed the rest frame of observers A, S, and B, since in this frame they
are at rest with respect to each other.

In the co-moving K ′ frame, the light pulse clearly reaches A and B at the
same time (t′ = 0), since and A and B are equidistant from the source. Therefore
the events a and b (the space-time points where the signal reaches observer A and
B) are simultaneous. However, in the stationary frame, it is seen that the light
pulse reaches A before it reaches B. This is because the speed of light, c, is the
same in all reference frames, but in the time it takes for the light pulse to reach
the observers, A has moved towards the source, while B has moved away from it,
so the light ray has to travel a longer distance to reach B. As a result, the events
a and b are not simultaneous when observed from the stationary frame. This is
shown in Fig. 2.1. It’s possible to derive the set of coordinate transformations
linking the reference frames geometrically, as is most common in textbooks. Here,
we will take a slightly different route by first considering an invariant property
called the spacetime interval.
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2.1.2 The space-time interval

As demonstrated above, time intervals as measured in different references frames
are not necessarily the same. By the assertion that the speed of light, c, is the
same in all frames, this directly implies that lengths measured in different ref-
erence frames are also not invariant. This may be somewhat disturbing, since
regular geometry is built on the concept of invariant lengths, and lengths are
preserved under spatial rotations and the Galilean transformations. We are thus
led to ask: is there an equivalent such invariant quantity within relativistic me-
chanics?

As is typical, we will begin our analysis by considering the paths taken by rays
of light. Consider a light ray, omitted from point x1 at time t1, and arriving at
point x2 at time t2. The distance the light ray moves is given by |∆x| ≡ |x2 − x1|,
or

√
∆x2.1 At the same time, since the ray moves at the speed of light, the same

distance can be expressed at c∆t. Therefore, we have the equality:

c2∆t2 −∆x2 = 0. (2.2)

Clearly, since the speed of light is the same in all reference frames, the same
equality holds in any reference frame:

c2∆t′
2 −∆x′2 = 0. (2.3)

Motivated by this equality, we define a quantity, the interval ds (or dτ)2:

ds2 ≡ c2dτ2 ≡ c2dt2 − dx2, (2.4)

which is equal to zero for the interval between any two space-time points that
can be connected by a light ray (“light-like” separated points), but in general
will be non-zero.

As we saw, if the interval ds2 is zero in one frame, then it will be zero in
every frame. It is natural to ask if this property holds for general intervals. To
maintain the linearity, general intervals in different frames must be proportional:

ds′2 = f ds2, (2.5)

where f is some (yet-undetermined) function. We note that due to the homo-
geneity of space, f cannot depend explicitly on time or coordinates. Further, due
to the isotropy of space, it cannot depend on the direction of the velocity, but
only its magnitude. Therefore, we must have f = f(v2).

1In our notation, bold symbols always represent regular three dimensional vectors, e.g.,
x = (x, y, z), and we use the shorthand x2 ≡ x2 + y2 + z2.

2A common alternative definition is ds2 = dx2 − c2dt2 = −c2dτ2, as discussed below.
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2.1 The Principle of Relativity

To proceed, consider a set of three reference frames, where frames 2 and 3
move relative to frame 1 with velocities v2 and v3, respectively. We then have

ds22 = f(v22) ds
2
1, ds23 = f(v23) ds

2
1, and ds23 = f(v223) ds

2
2, (2.6)

where v23 is the relative velocity of the third system with respect to the second
(in Galilean relativity, this would be simply v23 = v3−v2, but in general is not).
Solving for f(v223), we find:

f(v223) =
f(v23)

f(v22)
. (2.7)

Note, however, that |v23| depends not only on the magnitudes of the v2 and v3

vectors, but also on the angle between them. Since this angle does not appear on
the right-hand-side of Eq. (2.7), the function f(v2) must be simply a constant,
independent of the velocity.3 Immediately, Eq. (2.7) also tells us this constant
must be 1, which implies the interval ds is invariant.

A pair of space-time points (events) connected by interval ds2 > 0 are said to
be time-like separated. Events with ds2 < 0 are said to be space-like separated.
Since speeds may not exceed c, events which are space-like separated can have
no causal contact, and can be considered absolutely separated. For any time-like
separated points, there exists a frame of reference where the two events occur at
the same position. Likewise, for space-like separated points, there exists a frame
of reference where the two events happen at the same time; see Fig. 2.2.

Figure 2.2: There is no frame where the events in upper region occur before the origin;
they can therefore be considered strictly future points. The converse holds for the lower
region. No points outside the light cone can reach (or be reached by) the origin; they
are thus absolutely separated from the origin. The world line (space-time path) of any
particle passing through the origin must remain inside this light cone.

3To see this more clearly, imagine frame 2 and 3 move with the same velocity with respect
to frame 1 – clearly both sides of (2.7) are just 1, since v13 = v12, and v23 = 0. Now imagine
changing the angle between the velocities of frames 2 and 3, keeping their magnitudes the same;
|v13| and |v12| stay fixed by construction, but |v23| becomes non-zero.
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2.2 Lorentz transformation

Transformations between inertial reference frames are termed Lorentz transfor-
mations. These include the familiar spatial rotations, as well as transformations
between reference frames that move relative to each other with constant velocity,
known as Lorentz boosts (or simply boosts). Since we understand that physics
should remain invariant under global rotations of the spatial coordinates (the
assumption of isotropy of space), we shall first consider boosts. Note that trans-
lations (in space and time) are not included in the Lorentz transformations; the
generalised set of transformations which also includes translations is termed the
Poincaré transformations.

We can use the invariance of the interval directly to work out the form of the
Lorentz transformations. Consider two inertial reference systems. We label the
coordinates of the first system t,x,y,z, and of the second t′,x′,y′,z′. For simplicity,
we will consider the case in which the second frame moves with constant speed
v along the x-axis with respect to the first (due to the assumed invariance under
spatial rotations, we are always free to choose any direction as the x-axis).

As we saw above, Galilean transformations, which leave the time coordinate
invariant, cannot preserve the invariance of the interval. We therefore consider a
general linear transformation between the two coordinates:

ct′ = γct+ ηx

x′ = αx+ βct,
(2.8)

where α, β, γ, η are as-yet undetermined dimensionless functions (as v → 0, we
have α, γ → 1, and β, η → 0). The speed of light, c, is introduced to keep the
dimensions of the equations the same. Since there is no motion along the y or
z axes, we simply have y′ = y and z′ = z. In order for the interval ds2 to be
invariant, we require

c2t2 − x2 = c2t′2 − x′2

= (γ2 − β2)c2t2 − (α2 − η2)x2 + 2(γη − αβ)ctx. (2.9)

From this, we see that

γ2 − β2 = α2 − η2 = 1, and γη − αβ = 0, (2.10)

which is three equations in four unknowns.
To break the degeneracy, we consider now the special case of the motion of

the origin of the un-primed frame (x = 0). In the primed frame, this point moves
with x′/t′ = −v by construction. By dividing the equations (2.8) and setting
x = 0, we see that β = −γv/c, which leaves three equations in three unknowns:

γ2[1− (v/c)2] = α2 − η2 = 1

γ(η + αv/c) = 0.
(2.11)
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2.2 Lorentz transformation

From the third equation, we immediately see that η = −vα/c, and from the first
two, it is clear that α = γ and

γ(v) =
1√

1− (v/c)2
. (2.12)

(The sign ambiguity can be resolved by noting that γ(0) = 1.)
Putting things together, the Lorentz transformations for a boost along the x

direction with speed v are

ct′ = (ct− v
cx)γ , y′ = y ,

x′ = (x− vt)γ , z′ = z.
(2.13)

The generalisation to boosts along an arbitrary axis is fairly clear (we are free
to choose any direction as the x axis). There are several important observations
to make. Firstly, the factor γ is only real valued for |v| < c, which implies the
principle of relativity can only hold if nothing can move faster than the speed of
light. Secondly, notice that by rearranging Eq. (2.13) and solving for x and t, we
have

ct = (ct′ + v
cx

′)γ, and x = (x′ + vt′)γ, (2.14)

which is the same as Eq. (2.13) under v → −v. The symmetry of this result is
intuitive: we could have just as easily started from the primed system, with the
unprimed system moving along the x′ axis with the opposite speed −v.

Also, just as the notion of simultaneity was seen not to be consistent between
reference frames, we find that both time intervals and lengths are not necessarily
the same in different reference frames. This is known as time dilation and length
contraction. For example, the length between A and the source S was observed
to be L in the un-primed frame (see Fig. 2.1). It can be seen that this length is
shorter than the length in the co-moving (or rest) frame, L0, which is termed the
proper length. In our case, we had L = |xS − xA|, while L0 = |x′S − x′A|, leading
to the relation for length contraction:

L = L0/γ. (2.15)

Using the same logic, and the assertion that the speed of light is the same in all
frames, we also have

∆t = ∆τγ, (2.16)

where ∆τ is the time interval measured in the rest frame. The quantity τ is
known as the proper time – it is the time interval as measured in an observer’s
rest frame. With our convention [see Eq. (2.4)], proper time intervals are related
to the space-time interval as ds = cdτ .

We will now consider the important problem of the addition of velocities.
Consider two frames, K and K ′, where K ′ moves with speed V along the x-axis
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with respect to K. A particle moves with velocity v′ in the K ′ frame. What is
the velocity of the particle, v, as observed in the K frame? For the simplest case
of all velocities co-linear along the x-axis, we have v = dx/dt, and v′ = dx′/dt′.
By diving the terms from Eq. (2.14), we immediately see:

v =
v′ + V

1 + V v′/c2
. (2.17)

As a final note, we mention that it is customary to work in so-called natural
units, in which the speed of light takes the value

c = 1.

This can be done, for example, by measuring lengths in ‘light seconds’ (the
distance covered by light in one second). This makes the equations much simpler,
since we may drop the many factors of c that appear all over the place. In such
units, velocities become dimensionless; as a result, the units for energies and
mass become equivalent. We will use these natural units sometimes, though the
c values will be kept in mot places. You should get used to swapping between
regular and natural units.

Problem 2.1: Repeat the derivation of Eq. (2.17) for the case of general velocity v = dx/dt,
v′ = dx′/dt′. You may still take the two frames to move along the x-axis with velocity V with
respect to each other.

Answer (2.1): vx =
v′
x+V

1+v′
xV/c2

, vy =
v′
y γ(V )

1+v′
xV/c2

, vz =
v′
z γ(V )

1+v′
xV/c2

.

2.2.1 Four vectors

We can arrange the three spatial coordinates and the time-coordinate into a kind
of vector, known as a four-vector (sometimes called a Lorentz vector):

X = (ct, x, y, z)Tr. (2.18)

The components of the four vector are typically denotedXµ, withX0 = ct, X1 =
x, etc. (the convention is that coordinate four vectors have length dimension).
It is standard to use Greek indices to denote the components of four-vectors,
running 0 – 3, and reserve Latin indices for the spatial components (1 – 3). As
is standard, we reserve bold-type for regular three-dimensional vectors, and use
regular type for four-vectors. This sometimes leads to confusion. As a result,
it is common to use the index notation, and refer to xµ as a four vector.4 It is
fairly common to see four-vectors written as X = (t,x), or xµ = (t,x).

With this concept, the Lorentz transformation can be written as a matrix
equation,

X ′ = ΛX, (2.19)

4Strictly speaking, of course, aµ is the µ component of the vector a.
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where (for a boost along the x-axis), we have:

Λ(x)(v) =


γ −γv/c 0 0

−γv/c γ 0 0
0 0 1 0
0 0 0 1

 . (2.20)

Of course, we could have written this for a boost along a general direction, but
the matrix becomes much more complicated. In general, we can always write
Λ = R−1Λ(x)R, where R is the matrix for spatial rotations.

We will formalise this by taking the definition of a four vector to be an object
that transforms between inertial reference frames according to Eq. (2.19), in
much the same way that a regular three-dimensional vector is defined by its
transformation under spatial rotations. In the same sense, we may define a
Lorentz scalar (usually just called a scalar in this context), as being a quantity
that is invariant under Lorentz transformations.

The concept of Lorentz scalars is very important. Since our goal is to construct
a relativistic theory in which laws of physics are the same in all reference frames,
it is clearly important to identify the invariant quantities (scalars) which are the
same in all reference frames.

It’s important to understand that four-vectors do not obey the rules of regular
(Euclidean) geometry. For example, if we naively consider a “dot product”

X ·X = c2t2 + x2 + y2 + zz
?
= X ′ ·X ′

we see from an application of the Lorentz transformation (2.13) that X · X ̸=
X ′ · X ′, and so this quantity is not a scalar. Instead, it is the “Minkowski
product” c2t2 − x2 that plays the role of the invariant, our four-dimensional
space-time vectors form what is called “3 + 1-dimensional” pseudo-Euclidean
space, or Minkowski space, which will explored in some more detail in the next
section.

Problem 2.2: Show explicitly that Λ(x)(v)−1 = Λ(x)(−v). The physical meaning is clear: a
boost of +v followed by one of −v must return us to the original frame.

2.2.2 Minkowski space

We can define a quantity, called the metric tensor:

η =

(
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

)
, (2.21)

which allows us to simplify the expressions. For example, we can now write:

ds2 =
∑
µν

dxµηµνdx
ν . (2.22)
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We may now also define a new type of four-vector, denoted with a lowered index:

aµ ≡
∑
ν

ηµνa
ν . (2.23)

We call the regular vectors contravariant (or “upstairs”) vectors, while the other
type are called covariant (or “downstairs”) vectors. If the contravariant vectors

have components aµ
·
= (a0,a), then the covariant vectors have aµ

·
= (a0,−a).

Note that the covariant vectors transform as a′µ = Λ ν
µ aν , see Problem 2.3. We

also have
aµ ≡

∑
ν

ηµνaν , (2.24)

where ηµν = ηµν ; a direct multiplication shows this is consistent with Eq. (2.23).
We will also introduce here the Einstein summation convention, where re-

peated indices are assumed to be summed over:

aµbµ ≡
3∑

µ=0

aµbµ. (2.25)

Using this notation, the Lorentz transformation matrix Eq. (2.20) has the com-
ponents Λµ

ν . It’s important to keep track of the position of the indices when
there are mixed upstairs and downstairs types, since, in general Tµ

ν ̸= T µ
ν . This

notation leads to greatly simplified equations. For example, the interval formula
(2.4) can be expressed compactly as

ds2 = dxµdx
µ, (2.26)

and the Lorentz transform as

a′
µ
= Λµ

νa
ν . (2.27)

It’s easy to check explicitly that aµb
µ = aµbµ.

It is possible to construct objects with more than one Lorentz index (we have
already come across a few). For example, we can construct an object known as
a Lorentz tensor (or simply a tensor) as Tµν = AµBν . It is clear that this tensor
transforms according to

T ′µν = Λµ
αΛ

ν
βT

αβ . (2.28)

Certainly, not all tensors can be written as the product of two vectors, but we
take the definition of a tensor to be an object which transforms according to
Eq. (2.28). The number of Lorentz indices required to express the components
of an object is referred to as its rank. In that sense, a scalar is a rank-0 tensor, a
vector is a rank-1 tensor, the above tensor is rank 2, and so on. As a quick aside,
we note that a common short-hand is often used for the “square” of four vectors
and tensors: a2 = aµa

ν , T 2 = TµνT
µν .
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2.2 Lorentz transformation

It is appropriate here to note that our definition of the interval is not unique
– we could just as easily have defined ds2 = dx2 − dt2. In fact, both choices
are commonly made. The other choice corresponds to taking the opposite sign
for the metric η (2.21). This is usually denoted as the (+−−−) metric (with
the metric signature of −2) for our choice, or the (−+++) metric (with the
metric signature +2) for the other. The +2 metric is most common among those
studying general relativity, while the −2 metric is most common in relativistic
quantum mechanics. One must take particular care when mixing formulas taken
from different works.

Problem 2.3: Derive the transformation law for covariant vectors, and show they transform
like contravariant ones under v → −v (i.e., by inverse transform, see Problem 2.2).
Solution (2.3): For the contravariant vectors, we have A′µ = Λµ

νA
ν , and the covariant vector is

defined A′
µ ≡ ηµνA

′ν . Therefore,

A
′
µ = ηµρΛ

ρ
νA

ν
= ηµρΛ

ρ
ση

σν
Aν = Λ

ν
µ Aν .

A straight-forward matrix multiplication ηΛη shows the components of Λ ν
µ Aν are like those of Λµ

νA
ν

with v → −v. (Be careful with the notation: Mµνvν ̸= Mνµvν .)

Problem 2.4: Prove explicitly that aµbµ is a scalar (i.e., the same in all frames). It is enough
to consider boosts along a single axis, noting that Euclidean distances are invariant under
rotations.
Answer (2.4): Follows directly from Problem (2.3).

Problem 2.5: Show explicitly that the metric tensor is the same in all frames.

2.2.3 Derivatives, four-velocity

In regular three dimensional space, we can form vectors from the derivative of
scalar functions, ∇ϕ. Can we likewise form four-vectors from four-derivatives?
In other words, is the quantity

∂ϕ

∂xµ
= ( ∂ϕ

∂x0 ,
∂ϕ
∂x1 ,

∂ϕ
∂x2 ,

∂ϕ
∂x3 ) (2.29)

a four vector (does it transform between frames according to Lorentz transforma-
tions)? It’s easy to check, since we know how dx transforms. Considering again
the case of boosts along the x-axis, from Eq. (2.14) we have

∂t

∂t′
=

∂x

∂x′
= γ and

c ∂t

∂x′
=

∂x

c ∂t′
=
v

c
γ.

Therefore,

∂ϕ

c ∂t′
=

∂ϕ

c ∂t

∂t

∂t′
+
∂ϕ

∂x

∂x

c ∂t′
=

(
∂ϕ

c ∂t
+
v

c

∂ϕ

∂x

)
γ, and

∂ϕ

∂x′
=
∂ϕ

∂x

∂x

∂x′
+
∂ϕ

∂t

∂t

∂x′
=

(
∂ϕ

∂x
+ v

∂ϕ

c ∂t

)
γ.

(2.30)
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Comparing with Eqs. (2.13) or (2.20), we see that this derivative nearly trans-
forms as a four vector – it transforms as though through a Lorentz transformation
with the opposite sign for the velocity. That is, it transforms as a covariant vec-
tor (see Problem 2.3). We introduce the standard notation for the covariant
derivative operator,

∂µ ≡ ∂

∂xµ
=

1

c

∂

∂t
+∇, (2.31)

which makes the covariance of the derivative explicit. It is also useful to define
the contravariant derivative, ∂µ ≡ ηµν∂ν . With this, we can write simply the
d’Alembertian operator ∂2 ≡ ∂µ∂

µ = 1
c2 ∂

2
t −∇2 (often denoted □).

Now that we have a solid definition for derivatives, we may be tempted to
form a velocity vector as vµ = dxµ/dt. It is not difficult to see, however, that
this quantity is not a valid four vector (while xµ is a Lorentz vector, t is not a
Lorentz scalar). Instead, we can take the derivative of position with respect to
proper time, τ

uµ ≡ dxµ

dτ
, (2.32)

which we call the four velocity. Since τ is a scalar, u is a vector.

We can see the connection to the regular velocity, v, by examining the com-
ponents:

uµ ≡ dxµ

dτ
=

dxµ

dt

dt

dτ
. (2.33)

Since dτ =
√
ds2/c2 = dt

√
1− dx2/(cdt)2 = dt

√
1− (v/c)2, we see the tempo-

ral and spatial components of U are given by

u0 = c γ, and ui = viγ. (2.34)

Note that, by its definition,

uµuµ = c2. (2.35)

As such, the four velocity only has three independent components.

Problem 2.6: Show that dtdV is a scalar (hint: you may use the invariance of volumes dV
under rotations to arbitrarily choose the x-axis).

2.3 Relativistic dynamics

We wish to find the rules that govern the dynamics of particles within the frame-
work of the principle of relativity. Following the same logic from classical me-
chanics, the equations of motion should follow from the principle of stationary
action (see Mechanics Sec. 1.2). For the equations of motion to be the same in
all inertial reference frames, we need an action that is the same in all inertial

12



2.3 Relativistic dynamics

reference frames – i.e., the action should be a Lorentz scalar. The simplest scalar
is ds, so we can try an action of the form

S = kc

∫
ds, (2.36)

where k is an arbitrary constant, and c is introduced for dimensional convenience.
To be dimensionally correct, the k constant should have mass dimensions.

In Mechanics Sec. 1.3, we found based on symmetry arguments that the La-
grangian for a free particle should be a function of v2 only. Those arguments
should hold in the relativistic case, and indeed they do. To put things into more
familiar form, note that ds =

√
c2dt2 − dx2. By pulling out a factor of dt, we

may write

S = kc2
∫ √

1− (v/c)
2
dt. (2.37)

Now, the integrand may be recognised as a Lagrangian L = kc2/γ. Consider the
non-relativistic expansion, that is, the expansion around small v:

L ≈ kc2 − k
v2

2
− kv4

8c2
− . . . (2.38)

The first term is simply a constant, which will not affect the equations of motion.
Therefore, it is the second term that is important in the non-relativistic limit.
Note that if we set k = −m, then the action recovers the non-relativistic equations
of motion (for a free particle) [Mechanics Eq. (1.16)]. Therefore, we have the
relativistic Lagrangian for a free particle:

L = −mcds
dt

= −mc2/γ. (2.39)

The canonical momentum, pi (momentum conjugate to general coordinate
qi), can be determined from the Lagrangian [Mechanics (1.18)]

pi =
∂L

∂q̇i
, (2.40)

from which we find the relativistic expression for the linear momentum:

p = mvγ. (2.41)

Likewise, the energy (Hamiltonian) of the free particle can be determined from

H = piq̇i − L (2.42)

[see Mechanics (1.35)], from which we find:

E = mc2γ. (2.43)

13



2 Classical Field Theory B. M. Roberts

Expanding around small v,

E ≈ mc2 +
mv2

2
+

3mv4

8c2
+ . . . (2.44)

Therefore, in the low-velocity limit, the energy does not tend to zero, but to a
constant – the famous value mc2. The term ∝ v4 can be considered the lowest-
order relativistic correction to the kinetic energy.5

For a particle in a potential, we have for the Lagrangian

L = −mc2/γ − ϕ(x). (2.45)

A straight-forward application of the the Euler-Lagrange equations leads to

m
d(vγ)

dt
=

dp

dt
= −∇ϕ, (2.46)

which is the relativistic version of Newton’s second law. We therefore define the
force vector

F =
dp

dt
, (2.47)

which may be written as F γ = dp
dτ .

2.3.1 Four-momentum

Above, we found relativistic expressions for the linear momentum and energy
of a particle. It’s clear that the energy of a particle is not a Lorentz scalar –
it depends on the relative velocity of the observer with respect to the particle.
At the same time, the relativistic momentum was a three-vector, not a Lorentz
four-vector. If we require sets of relativistically invariant equations, we must seek
a relativistically invariant way of expressing these important quantities. In other
words, is there a way to form a four vector from these quantities?

A natural stating point is to consider the four-velocity, uµ. We define a
quantity pµ by multiplying uµ by mass

pµ = muµ. (2.48)

Since the four velocity is a Lorentz vector so is pµ. From Eq. (2.34), we see
immediately that the spatial components of pµ are exactly the relativistic mo-
mentum. Likewise, from Eqs. (2.34) and (2.43), the temporal component is the
relativistic energy (divided by c). We call this vector the four momentum, which
has components pµ = (E/c,p).

5In old works, the term “rest mass” may be defined via m = m0γ. This terminology is no
longer used; mass m is understood to be a scalar parameter of the theory. We may instead
define “rest energy” as E0 = mc2.
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2.4 Classical fields

Just as the four velocity has only three independent components (2.35), the
same is true for the four momentum. The components of the four momentum
are restricted by the condition

pµpµ = E2/c2 − p2 = m2c2, (2.49)

which follows directly from the above expressions. Rearranging, we come to the
famous Einstein energy-momentum relation:

E2 = m2c4 + p2c2, (2.50)

which (of course) is the same as Eq. (2.43).
Note that the above Lagrangian formalism clearly does not work in the case

of massless particles. This is a result of the fact that there exists no reference
frame where massless particles are at rest. While the relations in Eq. (2.43) and
(2.41) are not valid for massless particles, Eq. (2.50) is valid. For such particles,
this relation implies |p| = E/c.

2.4 Classical fields

In general, field theory is the study of continuous distributions, which can be
described by continuous functions of time and coordinates: ϕ = ϕ(t,x). While
classical fields may describe (near-)continuous distributions of matter, we will
focus on the case of the intrinsically continuous fields that mediate the interac-
tion between bodies (e.g., electromagnetic or gravitational fields). Our goal, in
general, is to ascertain the set of field equations which govern the temporal and
spatial evolution of the fields.

Without any assertion for the specific form these equations may take, we can
follow the exact same logic as in classical mechanics, and assert they obey a
principle of stationary action, with action S defined:

S =

∫
dt L, (2.51)

where the Lagrangian L depends on the fields ϕ(t,x) and their derivatives, ∂µϕ.
From the principles of homogeneity and isotropy, it cannot depend explicitly on
coordinates [e.g., see Mechanics Sec. 1.3].

Further, if we require relativistically invariant equations of motion, then the
action should also be relativistically invariant, i.e., a Lorentz scalar. Note, how-
ever, that if S is a scalar, then the Lagrangian L in Eq. (2.51) certainly cannot
be, since dt is not a scalar. For this reason, we introduce the Lagrangian density6,

6It is common to simply use the term Lagrangian to refer to the Lagrangian density in the
context of field theories.
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2 Classical Field Theory B. M. Roberts

L, defined via L =
∫
d3xL, such that

S =

∫
dtdV L =

1

c

∫
d4xL, (2.52)

where and d4x ≡ cdtdxdydz. Since dtdV is a scalar (see Problem 2.6), so is L.
The derivation of the Euler-Lagrange equations for a field theory follows

closely that in the non-relativistic case; we seek an extremum of the action such
that δS = 0. Since the Lagrangian depends on the field ϕ and its derivatives
∂µϕ, the general variation of the action is

δS =
1

c

∫
d4x

[
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
∂µ(δϕ)

]
=

1

c

∫
d4x

[
∂L
∂ϕ

− ∂µ

(
∂L

∂(∂µϕ)

)]
δϕ, (2.53)

where in the first line we used the commutativity of the derivative to write
δ(∂µϕ) = ∂µ(δϕ), and in the second line we used integration by parts (assuming
the boundary term goes to zero). For δS to be zero for general variations δϕ, the
term in the square brackets must be zero, yielding the Euler-Lagrange equations
for the field ϕ

∂L
∂ϕ

= ∂µ

(
∂L

∂(∂µϕ)

)
. (2.54)

The generalisation to the case of multiple fields (ϕ1, ϕ2, . . .) is clear; just as in
the case of multiple particles in classical mechanics, there is a separate Euler-
Lagrange equation for each field. While we explicitly wrote the equations as
though ϕ were a scalar field, the derivation is exactly the same for vector (and
higher rank) fields ϕ → ϕµ: there is a Euler-Lagrange equation for each field
component. It’s important to realise that any term added to the Lagrangian
density that is a total divergence

L → L+ ∂µk
µ, (2.55)

will change the action by at most a boundary term (due to the divergence the-
orem). If the source kµ goes to zero at infinity, which is usually the case, then
such a term cannot impact the field equations.

Notice what happens in the special case that the field has no spatial degrees of
freedom, i.e., ϕ = ϕ(t). The spatial derivatives are zero, and the Euler-Lagrange
equations become exactly those from regular (particle) classical mechanics, with
ϕ(t) playing the role of x(t). A field theory with no spatial degrees of freedom
reduces to regular particle mechanics.
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2.4 Classical fields

2.4.1 Field theory as the continuum limit

As a first example of a field theory, we’ll consider a simple non-relativistic one
dimensional system of coupled harmonic oscillators, which you may have seen
before. Take a large set of particles, each of mass m, connected by a series of
springs of spring constant k. In equilibrium, the masses are separated by ∆x.

To write the Lagrangian, note that the kinetic energy of each particle is
mϕ̇2n/2, where ϕn denotes the deviation of the nth particle from its equilibrium
position. There is also a potential energy associated with each spring (i.e., with
each pair of particles) given by Hooke’s law k(∆ϕn)

2/2, where ∆ϕn = ϕn−ϕn−1.
Finally, we might consider the case where each mass is also held in position by a
separate spring with constant k′. Then, the Lagrangian is

L =
∑
n

(
m

2
ϕ̇2n − k

2
(∆ϕn)

2 − k′

2
ϕ2n

)
. (2.56)

To see how this problem can be treated using field theory, we shall take the
continuum limit, where the separation between each mass ∆x → 0. To aid in
taking the limit, we factor out ∆x

L = ∆x
∑
n

(
m

2∆x
ϕ̇2n − k∆x

2

(∆ϕn)
2

(∆x)2
− k′

2∆x
ϕ2n

)
. (2.57)

Note that we could write instead ϕn = ϕ(xn), where xn is location of the nth
particle. It’s important to note that it is ϕ, not xn, that is the dynamical variable;
xn is simply the label for which mass is being referred to.

In taking the ∆x→ 0 limit, we recognise ∆ϕn/∆x as the derivative ∂xϕ. We
further define µ = m/∆x (mass density), τ = k∆x (tension), and σ = k′/∆x
(stiffness), leading to

L =

∫
dx
[µ
2
(∂tϕ)

2 − τ

2
(∂xϕ)

2 − σ

2
ϕ2
]
. (2.58)

The equations of motion are

∂2ϕ

∂t2
− τ

µ

∂2ϕ

∂x2
+
σ

µ
ϕ = 0. (2.59)

In the simplest case of σ = 0, the solutions are just plane waves travelling with
speed v =

√
τ/µ. In the case where τ = 0, the equations are just those of

the simple harmonic oscillator with ω =
√
σ/µ =

√
k′/m, which is of course

not surprising. The generalisation to three spatial degrees of freedom is clear:
∂x → ∇.
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2 Classical Field Theory B. M. Roberts

2.4.2 Relativistic field theory

In general, we can consider Lagrangian’s for relativistic field theories that satisfy
the following principles:

• The Lagrangian density should be a local function of the fields and their
derivatives (i.e., involve only a single coordinate)

• It should depend on terms that are at most first-order time derivatives of
the fields, which ensures the equations of motion involve at most second-
order time derivatives

• It should be a Lorentz scalar to ensure relativistic invariance (which, to-
gether with the previous point, implies also at most first-order spatial
derivatives).

To form a Lorentz invariant Lagrangian density from the fields, we must
understand what happens to the fields under Lorentz transformations. In the
simplest case of a scalar field, the meaning is reasonably intuitive. A scalar
field is simply a function that assigns a number – a scalar – to every space-time
location. By definition, scalars remain invariant under Lorentz transformations,
so we have

ϕ(xµ) → ϕ′(xµ′) = ϕ′(Λµ
νx

ν) = ϕ(xµ), (2.60)

where ϕ′ is the field as written in the transformed coordinates, which we could
write as ϕ′(y) = ϕ(Λ−1y), where y = x′ = Λx. That is, the value of the trans-
formed field at the transformed coordinate should be the same as the original
field at the original coordinate.

In much the same way, a vector field is a function that assigns a vector to every
space-time location. By definition, vectors transform according to Eq. (2.27), so
we have

Aµ(x) → A′µ(x′) = Λµ
νA

ν(x). (2.61)

The extension to tensor and higher-rank forms carries in the same way.
There is another constraint we may place on the Lagrangian that holds in

many (but certainly not all) cases of physical interest. Many fields in nature,
for example electromagnetic and gravitational fields, obey the principle of su-
perposition. If there are two fields, ϕ1 and ϕ2, which independently satisfy the
field equations and obey the superposition principle, then total field is the simple
composition of each, Φ = ϕ1 + ϕ2, which must also obey the field equations. In
other words, if if ϕ1 and ϕ2 are both solutions to the field equations, then so must
be ϕ1 + ϕ2. The field equations of motions resulting from the Euler-Lagrange
condition (2.54) are differential equations. For the superposition principle to
hold, these must be linear differential equations. That is, the field equations of
motion must contain terms involving only linear functions in ϕ. In varying the
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action (i.e., applying the Euler-Lagrange equations), the degree of the terms in
the Lagrangian is reduced by one. This implies the further condition:

• If the field obeys the superposition principle, the Lagrangian density may
contain terms that are at most quadratic in the field.

This is not a universal constraint; in general, fields need not obey such a superpo-
sition principle, and the Lagrangian can have any power. However, it’s important
to note that higher powers may be important at certain energy scales only.

The simplest Lorentz scalar that is quadratic in the fields and containing only
first-order derivatives is ∂µϕ∂

µϕ. Note this is exactly the first two terms from
our simple example in Eq. (2.58) in the case τ = µ. We may then also consider
possible potential terms of higher field powers:

L =
1

2
∂µϕ∂

µϕ− c2ϕ
2 − c3ϕ

3 − c4ϕ
4 − . . . , (2.62)

An important physical consequence for cases such as these is that the behaviour
of the field may change significantly with the amplitude of the field. For example,
for small field perturbations, the quadratic term will dominate. For ϕ ≳ c2/c3,
the cubic term will become important, and so on. This is the general principle
underlying effective field theories.

2.4.3 Scalar field theory: Klein-Gordon equation

We shall now briefly consider an important example, the classical Klein-Gordon
equation for a real scalar field ϕ. The action for a scalar field may be written

S =

∫
L(ϕ, ∂µϕ) d4x. (2.63)

(We use c = 1 units for the remainder of this section.) As we discussed above,
one of the simplest examples for an invariant Lagrangian can be written as

L =
1

2
∂µϕ∂

µϕ− µ2

2
ϕ2, (2.64)

where the signs and factors are chosen by convention. (It should be noted that
while the overall sign is arbitrary, the relative sign is of physical significance.)
Note that we cannot include terms of the form ∂2ϕ, since we require only first-
order derivatives, and we restrict ourselves to quadratic terms in ϕ in order
to preserve the superposition principle (i.e., so that we have linear equations
of motion). Since the Lagrangian density has dimension energy per volume,
[L] = E/L3, the field ϕ has dimension: [ϕ] = E1/2 L−1/2.

It is straight forward to find the field equations. From Eq. (2.54), we have

∂L
∂ϕ

= −µ2ϕ, and
∂L

∂(∂µϕ)
= ∂µϕ. (2.65)
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2 Classical Field Theory B. M. Roberts

From the Euler-Lagrange condition (2.54), this leads to the equations of motion
for the Klein-Gordon field:

∂2ϕ+ µ2ϕ = 0, (2.66)

which you may recognise as a wave(-like) equation. It is not difficult to see that
solutions include those of the form of (real) combinations of oscillating plane
waves:

ϕ = e±ikµx
µ

. (2.67)

These describe classical waves with angular frequency ω = ck0, and wave vector
k. On inserting Eq. (2.67) into (2.66), we find the condition for the Klein-Gordon
wave four vector:

kµk
µ = µ2. (2.68)

2.4.4 Particles and fields

In a quantum field theory, particles and fields will become unified, and will be
described by a single quantum Lagrangian. Classically, however, they are treated
differently. If we consider a set of particles, described by coordinates x, as well as
a set of fields ϕ, then the total Lagrangian may be expressed as the sum of terms
involving only particle coordinates, terms involving only fields, and interaction
terms, which involve both:

L = Lparticle(x) + Lfield(ϕ) + Linteraction(x, ϕ) (2.69)

(for simplicity, we write the equations for a single particle and a single field,
though the generalisation is clear). It is no surprise that if there is no interaction
between the particles and the field, then they evolve independently from one
another, and may be considered separately. If the interaction term is non-zero,
however, the equations of motion will not be separable; physically this means
that the field impacts how the particle evolves, and likewise, the particle impacts
how the field evolves.

In certain circumstances, a simplifying approximation is possible. If the in-
teraction between the particle and the field is sufficiently weak, then the action
of the particle on the field may be neglected (consider, e.g., small mass in a
gravitational field, or an electron in a macroscopic electric field). In that case,
supposing the values for the fields are known, we need only consider the particle
and interaction terms in the problem.

Let’s consider an example of the interaction between a particle scalar field.
Since the action must be a scalar, the simplest action we can write down involving
both particle and field terms is

Sint = −
∫
f(ϕ) ds, (2.70)
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where f(ϕ) is any scalar function of ϕ. Note that the values of ϕ(xµ) are evaluated
at the positions (along the world line) of the particle, and the arbitrary negative
sign is by convention. In analogy with the pure particle case (2.39), the total
Lagrangian is then (with c = 1)

Lpart+int = − [m+ f(ϕ)]
√
1− v2. (2.71)

By comparison with Eq. (2.39), it’s clear the effect of this term on the equation
of motion of the particle is m → m + f(ϕ). This is a (very crude) analogy for
how the Higg’s field (which is a scalar field, albeit a quantum one) may give mass
to particles.

2.5 Symmetries and conservation laws

Following our discussion of symmetries in classical mechanics [Sec. 1.4], we shall
consider the extension to relativistic field theories. Consider a general continuous
transformation of the form ϕ → ϕ + δϕ. We consider infinitesimal transforma-
tions, such that

δϕ = ϵf, (2.72)

where ϵ is an infinitesimal continuous parameter, and finite continuous transfor-
mations can always be built from successive applications of the above. While we
explicitly write the equations as though for scalar fields, the arguments hold for
the general case. In this section, we use c = 1.

This transformation is considered a symmetry if it leaves the equations of
motion unchanged. From the principle of stationary action, this means it may
change the action by at most a constant. In other words, the change in the
Lagrangian δL must be either zero, or a total divergence. Therefore, in the
assumption that Eq. (2.72) is a symmetry, we have

δL = ϵ∂µk
µ, (2.73)

for some kµ.
The general variation in the Lagrangian from the variation δϕ is

δL =
∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ(∂µϕ). (2.74)

From the equations of motion (2.54), we have

δL = ∂µ

(
∂L

∂(∂µϕ)

)
δϕ+

∂L
∂(∂µϕ)

∂µ(δϕ)

= ∂µ

[
∂L

∂(∂µϕ)
δϕ

]
. (2.75)
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Comparing to Eq. (2.73), we thus have

∂µ

[
∂L

∂(∂µϕ)
f − kµ

]
= 0, (2.76)

where the term in the square brackets defines a conserved current density, Jµ:

∂µJ
µ = 0, with Jµ =

∂L
∂(∂µϕ)

f − kµ. (2.77)

This important result is called Noether’s theorem7:

For every continuous symmetry of the action, there a corresponding
locally-conserved charge and current.

2.5.1 Continuity equations

Note that Noether’s theorem (2.77) is a similar, but a much stronger, result than
we found in the classical case [see Mechanics Sec. 1.4.4], where we had

d

dt
Q = 0, with Q ≡ Pf. (2.78)

By comparison, we could define the conserved charge,8 as the volume integral of
the zero component of the conserved current density:

Q =

∫
d3xJ0.

The classical case, Eq. (2.78), implies a globally conserved charge, Q. The rela-
tivistic case, Eq. (2.77), implies the stronger condition of a continuously conserved
current:

∂

∂t
J0 +∇ · J = 0, (2.79)

which is a continuity equation. This implies a locally conserved four-current,
rather than simply globally conserved charge. To see this, integrate over any
arbitrary volume, V :∫

dV

(
∂

∂t
J0 +∇ · J

)
=

∂

∂t
Q+

∫
dV (∇ · J) = 0 (2.80)

=⇒ ∂

∂t
Q = −

∮
S

J · n dS, (2.81)

7E. Noether, “Invariante Variationsprobleme”, Gott. Nachr. 1918, 235–257 (1918), Invari-
ant Variation Problems (Translation), arXiv:physics/0503066.

8We use the word “charge” here generally to refer to any conserved quantity.
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Figure 2.3: The flux of current J through surface, S, of a volume, V , is the integral of
J · n̂ dS over the surface, where n̂ in the unit vector normal to the surface element dS.
By Eq. (2.81), this is equal to the (negative) of the rate of change of the total charge
Q =

∫
J0dV in the volume.

where we used Gauss’ theorem in the final step [see Eq. (2.167) in Appendix 2.9.2],
S is the surface of the volume V , and n is the unit vector perpendicular to the
surface. This says that the change in the charge inside any arbitrary volume
V [left-hand-side of (2.81)], must be compensated for by a corresponding flux of
current through the surface of the volume [right-hand-side of (2.81)]; see Fig. 2.3.

For the particular case of coordinate transformations, xµ → xµ + δxµ (e.g.,
translations, rotations, boosts), we have

δϕ = (∂µϕ) δx
µ, and δL = (∂µL)δxµ. (2.82)

In many cases of interest (including translations and rotations), the divergence of
the coordinate transform is zero: ∂µδx

µ = 0. Then, we may write the variation
in the Lagrangian particularly simply

δL = ∂µ(Lδxµ), (2.83)

which allows us to write the conserved current as

Jµ =
∂L

∂(∂µϕ)

δϕ

ϵ
− δxµ

ϵ
L. (2.84)

2.5.2 Stress-energy tensor

In Mechanics, we saw that the symmetry of a system under temporal translations
led to the law of conservation of energy, and that the symmetry under spatial
translations led to momentum conservation. We can now extend this idea to the
relativistic scenario. Consider space-time translations of the form

xν → xν + δxν , (2.85)

where δxν is a constant. At first, to get used to manipulating multi-index equa-
tions, you may consider ν to represent a single fixed (yet arbitrary) coordinate
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index. Under this translation, we have again

δϕ = ∂µϕ δx
µ

where, in comparison with the above, we set f = ∂νϕ, and ϵ = δxν .
Therefore, using Noether’s theorem, we have the conserved current:

∂L
∂(∂µϕ)

∂νϕ− ∂νx
µL. (2.86)

where ∂νx
µ = δµν is 1 for µ = ν, and zero otherwise. We will have one such

equation for each ν index. The resulting set of equations define the components
of a rank two tensor, which we term the stress energy tensor:

Tµν =
∂L

∂(∂µϕ)
∂νϕ− ηµνL, (2.87)

where we used Eq. (2.24) to raise the second index. Note that by construc-
tion (2.76), we have

∂µT
µν = 0, (2.88)

so long as space-time translation is a symmetry of the system.

2.5.3 Hamiltonian and momentum

As we saw in our study of classical mechanics, symmetry under time translations
(i.e., the above with ν = 0), led to energy conservation. In this case, considering
the ν = 0 terms, we have

∂µT
µ0 = ∂0T

00 + ∂iT
i0 (2.89)

= ∂tT
00 + ∂i

(
∂L

∂(∂iϕ)
ϕ̇

)
= 0, (2.90)

which can be understood as a continuity equation for energy density. We can
thus recognise T 00 as the energy density, or Hamiltonian density:

T 00 ≡ H =
∂L
∂ϕ̇

ϕ̇− L. (2.91)

Note the similarity to the classical expression for the Hamiltonian (2.42). The
continuity equation is therefore

∂

∂t
H = −∇ ·

(
∂L

∂(∇ϕ)
ϕ̇

)
, (2.92)

and we can further recognise T i0 (the term in the parenthesis) as the energy
density flux.
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Similarly, T 0i can be recognised as the momentum density

P i ≡
∫

d3x
∂L

∂ϕ̇(x)
∂iϕ. (2.93)

In analogy with the classical expression (2.40), we also define the canonical mo-
mentum density for the field

π(x) ≡ ∂L
∂ϕ̇(x)

. (2.94)

With this, we may write the expression for the momentum as

P = −
∫

d3xπ(x)∇ϕ, (2.95)

which is the quantity that is conserved if the system is invariant under spatial
translations. This can be written in the four-vector form as Πµ = T 0µ, or

Pµ =

∫
d3xT 0µ. (2.96)

These definitions may seems a little abstract for now. One way to justify
the identification of these terms as the energy and momentum is to consider
the limit of a field with zero spatial degrees of freedom: ϕ(t,x) → ϕ(t). As
we discussed earlier, in this limit, we recover regular particle mechanics when
identifying ϕ(t) = x(t). It’s straight forward to show that the above expressions
for T 00 and T 0i do reduce to the classical definitions of energy and momentum
(density) in this limit. The physical meaning of these terms will become much
clearer once we consider specific examples.

2.5.4 Uniqueness of the stress-energy tensor

It’s important to notice that the definition of the stress-energy tensor is not
unique. If we add to the tensor a derivative of the form

Tµν + ∂λK
µλν , with Kµλν = −Kλµν , (2.97)

(i.e., where K is anti-symmetric in its first two indices), then the continuity
condition ∂µT

µν = 0 (2.88) will remain unchanged. To see this, note:

∂µ∂λK
µλν = −∂µ∂λKλµν = −∂λ∂µKλµν = −∂µ∂λKµλν = 0,

where we used the anti-symmetry of K, then the commutativity of the derivative,
and then relabelled the dummy indices µ ↔ λ. Since this derivative is zero,
Eq. (2.88) will not be changed. It is also possible to show that the total energy
and momentum (2.96) are not impacted by this change. We shall not go through
the details here, but it turns out that the stress energy tensor may be uniquely
chosen so that it is symmetric (see, e.g., Landau Sec. 849).

9L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (1971).
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2.6 Electromagnetic interactions

You are likely aware that electric and magnetic fields are described by (three-)
vector, rather than scalar, quantities. As it turns out, electromagnetic fields and
their interactions may be described by a (four-) vector field, denoted Aµ, which
is called the electromagnetic vector potential. We will start by considering the
motion of a particle within the influence of such a vector field. At first, we will
consider again the weakly interacting case, where the influence of the particle on
the field may be neglected. Therefore, on top of the particle terms, we need only
consider interactions terms in the action. (Of course, the full theory will describe
the evolution of the fields, which will be impacted by the particles; we will return
to this in the next section.)

To determine how we should change the action of the particle to account for
its interaction with the field, we can ask what scalars can be made from a vector
field, Aµ? The simplest such term we could add to the action is proportional to

Aµdx
µ.

This is of course not the only option; we could also have any term of the form
f(Aµ)ds, where f is a general scalar function. Ultimately, we must be guided by
experiment. It turns out that the simplest term above is sufficient, as we shall
see; we will return to a discussion of further possibilities in time.

The contribution to the action is therefore written

Sint = −q
c

∫
Aµdx

µ = −q
∫ (

A0 −
1

c
A · v

)
dt, (2.98)

where q is an arbitrary scalar constant (negative sign and the factor of c are in-
troduced for dimensional convenience), and x refers to the particle coordinates.
To be dimensionally correct, the combination qAµ must have energy units. The
constant q is called the charge of the particle. Notice that as q → 0, the interac-
tion term will have no impact on the equations of motion; we say that the charge
quantifies the strength of the interaction between the particle and the field. We
note here that we employ the Heaviside-Lorentz units for electromagnetic quan-
tities, in which the factors ε0 and µ0 do not appear explicitly in the equations;
see Appendix 2.9.1 for discussion and definitions. For this section, we will retain
factors of c, for ease of comparison to non-relativistic results.

Combining with Eq. (2.39), we may write the total Lagrangian as

L = −mc2/γ − qA0 +
q

c
A · v, (2.99)

where we have Aµ = (A0,A); A0 may be called the electric scalar potential
(often denoted Φ), and A the magnetic vector potential; we shall see why shortly.
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2.6 Electromagnetic interactions

Directly from the Lagrangian, we may find the expression for the generalised
momentum

P =
∂L

∂v
= mvγ +

q

c
A = p+

q

c
A, (2.100)

using p = mvγ from Eq. (2.41).

2.6.1 Lorentz force law

We shall now find the equations of motion for the system. From Mechanics
[Eq. (1.19)], the equations of motion can be expressed

dp

dt
=
∂L

∂x
.

First, we find

∂L

∂x
= −q

c
[c∇A0 −∇(A · v)]

= −q
c
[c∇A0 − (v · ∇)A− v × (∇×A)] , (2.101)

where we made use of the vector identity10 (note that the spatial derivatives are
performed at fixed velocity).

For dp
dt , note that A is evaluated at the particle position x(t), and may also

have an intrinsic time dependence. Therefore,

dA

dt
=
∂A

∂t
+
∂A

∂xi

∂xi
∂t

=
∂A

∂t
+ (v · ∇)A, (2.102)

and so the equations of motion are

dp

dt
= −q

c

[
c∇A0 +

∂A

∂t
− v × (∇×A)

]
. (2.103)

Notice that the equations of motion depend only on derivatives of the potential
Aµ. We are therefore led to define the fields

E ≡ −1

c

∂A

∂t
−∇A0 and B ≡ ∇×A, (2.104)

where E is called the electric field strength, and B the magnetic field strength.
With these definitions, the equations of motion may be written as

F = qE +
q

c
v ×B, (2.105)

which is known as the Lorentz force law.

10∇(a · b) = (a · ∇)b+ (b · ∇)a+ a× (∇× b) + a× (∇× a); see Appendix 2.9.2.
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2 Classical Field Theory B. M. Roberts

The equations for the E and B fields (2.104) are linked through the potential,
Aµ. It is also possible to form a set of equations for the fields, independently
from the potential. Taking the curl of E, and the divergence of B, we find

∇×E = −1

c

∂B

∂t
and ∇ ·B = 0, (2.106)

where we made use of the fact that the curl of a divergence, and the divergence of a
curl, is zero (see Appendix 2.9.2). You may recognise these as the homogeneous
pair of Maxwell’s equations (Maxwell–Faraday equation, and Gauss’s law for
magnetism), which follow directly from the definition of the fields. The full
equations governing the dynamics of the electromagnetic fields (i.e., the second
inhomogeneous pair of Maxwell’s equations) will require a consideration of the
action for the fields themselves; we will return to this question in the coming
sections.

Problem 2.7: Show directly that (v · ∇)A+ v × (∇×A) = ∇(A · v), where A = A(x), and
v is a constant.

2.6.2 Gauge invariance

It’s important to notice that the equations of motion (the Lorentz force law)
depend only on the electromagnetic fields, E and B, not on the potentials them-
selves. Since the fields (2.104) depend on derivatives of the potential, it is clear
that the equations of motion are invariant under the global transformation

Aµ → A′
µ = Aµ + const.

In fact, it turns out the symmetry is much deeper, and the equations of motion
remain invariant under the local transformation:

Aµ → A′
µ = Aµ + ∂µθ(x

µ), (2.107)

where θ = θ(xµ) is any (continuous, differentiable) function of spacetime coordi-
nates. In terms of the scalar and (three) vector potentials, this is

A0 → A0 +
1

c

∂θ

∂t
and A → A−∇θ.

The symmetry under this type of transformation is known as gauge invariance.
It’s fairly straight forward to show that the fields in Eq. (2.104) remain in-

variant under this transformation. It is possible to show the equations obey this
symmetry at a deeper level. The change to the term in the action (2.98) under
the gauge transformation (2.107) is

Aµdx
µ → Aµdx

µ + (∂µθ)dx
µ (2.108)
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2.6 Electromagnetic interactions

which is a total differential, and thus changes the action by at most a constant.
It therefore cannot impact the equations of motion. That the electromagnetic
interactions are observed to obey this gauge symmetry is the reason the

∫
AµAµds

term, which is not gauge invariant, may not appear in the action.
While any gauge choice is valid, some choices may be more convenient for

certain problems. A common example is the Lorenz gauge, for which

∂µA
µ = 0. (2.109)

This choice is widely used, and is convenient due to the explicit Lorentz in-
variance. The Lorenz condition is known as a partial gauge condition, since it
does not completely determine the gauge. Any further transform of the form
Aµ → Aµ+∂µϕ where ∂µ∂

µϕ = 0 will change the gauge while leaving the Lorenz
condition intact.

A particularly common choice is the Coulomb gauge, also known as the trans-
verse gauge, which is explicitly not Lorentz invariant. In the Coulomb gauge we
assert that the spatial derivatives are zero:

∇ ·A = 0. (2.110)

This choice is particularly common in practical and non-relativistic calculations.
In general, it is always possible to choose a gauge where any one component of
Aµ to be zero; it is often convenient to set A0 = 0.

2.6.3 Electromagnetic field tensor

In the above sections, we derived the Lorentz force law, the equations of motion of
a charged particle in an electromagnetic field. Despite beginning from a Lorentz
invariant action, we resulted in an equation in terms of regular three-vectors. Of
course, it should be possible to write the equations in four-vector (i.e., covariant)
form.

Consider the action for a particle in an electromagnetic field:

S =

∫
(−m ds− qAµdx

µ) ,

(where we maintain the weak interaction approximation as discussed above, and
go back to c = 1 units). Noting that ds =

√
dxµdxµ, we can write the variation

in ds as

δ(ds) =
dxµ
ds

δ(dxµ) = uµd(δx
µ), (2.111)

where u is the four-velocity. At the same time, we have

δ(Aµdx
µ) = δ(Aµ)dx

µ +Aµd(δx
µ),
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2 Classical Field Theory B. M. Roberts

where we used δ(dxµ) = d(δxµ). Therefore, the variation in the action is

δS =

∫ (
−muµd(δx

µ)− q [∂νAµδx
νdxµ +Aµd(δx

µ)]
)
, (2.112)

where we made use of
δ(Aµ) = ∂νAµδ(x

ν).

Integrating the first and third terms in (2.112) by parts, this becomes

δS =

∫ (
mduµ δx

µ − q [∂νAµδx
νdxµ − ∂νAµdx

ν δxµ]
)

=

∫ (
mduµ − q [∂µAνdx

ν − ∂νAµdx
ν ]
)
δxµ = 0, (2.113)

where we swapped the dummy indices µ↔ ν in the second term. Finally, noting
that the variation must be zero for arbitrary δxµ, the equations of motion are
found

m duµ − q [∂µAν − ∂νAµ] dx
ν = 0. (2.114)

Just as above, we find the equations of motion depend only on the derivatives
of the A field. We thus now introduce the Electromagnetic field tensor (sometimes
called the Faraday tensor, or the Maxwell tensor), defined

Fµν ≡ ∂µAν − ∂νAµ, (2.115)

which is an anti-symmetric, rank two tensor. From the definitions in Eq. (2.104),
the components can be found to be11

Fµν =

(
0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

)
. (2.116)

It is important to notice that, with this definition, Lorentz transformations can
be seen to directly mix up the components of electric and magnetic fields.

With this, the Lorentz force law (2.114) may be written in covariant form:

dpµ

ds
=

q

c2
Fµνuν . (2.117)

It can be convenient to notice that the components of the electromagnetic fields
can be expressed as

Ei = −F 0i, and Bi = −1

2
εijkFjk or F ij = −εijkBk = εijkBk, (2.118)

11Note the potentially confusing notation: ax = a1 is the x-component of a.
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2.6 Electromagnetic interactions

where εijk is the totally anti-symmetric Levi-Civita symbol. Landau12 introduces
the compact notation Fµν ≡ (−E,B), with which Fµν = (E,B).

We may now express the homogeneous pair of Maxwell’s equations (2.106) in
covariant form. To do this, consider derivatives of the tensor terms of the form

∂λFµν = ∂λ(∂µAν − ∂νAµ) = ∂µ∂λAν − ∂ν∂λAµ, (2.119)

where we commuted the derivatives. Noting that we may write ∂λAν = Fλµ +
∂µAλ, we see that we can form combinations that sum to zero:

∂λFµν + ∂µFνλ + ∂νFλµ ≡ ∂[λFµν] = 0. (2.120)

This is called the Bianchi identity. Evaluating the Bianchi identity with {λ, µ, ν} =
{0, 1, 2} and {1, 2, 3}, respectively, we eventually arrive at

∇×E = −∂B
∂t

, and ∇ ·B = 0, (2.121)

which are of course the Maxwell–Faraday equation and Gauss’s law for mag-
netism. Therefore, Eq. (2.120) is the covariant form for the homogeneous pair of
Maxwell’s equations.

It is convenient to also define the dual tensor F̃µν (sometimes denoted F):

F̃µν =
1

2
ϵµνρσFρσ, (2.122)

where ϵµνρσ is the totally anti-symmetric rank four tensor.13 Using the Landau
notation, F̃µν = (−B,−E). With the dual tensor, the homogeneous Maxwell
equations can be expressed as

∂µF̃
µν = 0. (2.123)

Problem 2.8: Explicitly determine the components Fµν of the Faraday tensor using its defi-
nition in Eq. (2.115) and the definition of the fields (2.104).

Problem 2.9: Show explicitly that the Lorentz force law (2.105) follows directly from the
spatial terms in Eq. (2.117).

Problem 2.10: What is the physical meaning of the temporal term in Eq. (2.117)?
Answer (2.10): It is the work equation: dE

dt = qE · v.

Problem 2.11: Show explicitly from its definition (2.115), that the field tensor Fµν is invariant
under the gauge transformation (2.107).

Problem 2.12: Find the scalar FµνFµν .
Solution (2.12): With notation F = Fµν , and noting that Fµν = ηµαηνβF

αβ = ηFη, we have

FµνF
µν = tr[(ηFη)TF ] = − tr[(ηFη)F ] = 2(B2 − E2), where tr(M) = Mµµ is the trace.

Problem 2.13: Explicitly work out equations (2.121) from the Bianchi identity (2.120), and
from the dual tensor equation (2.123).

12L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (1971).
13ϵµνρσ = 1 under any even permutation of ϵ0123, = −1 under any odd permutation, = 0 if

any two indices are equal, and ϵµνρσ = −ϵµνρσ .
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2 Classical Field Theory B. M. Roberts

2.6.4 Current density

Before we continue to full field theory description of electromagnetic fields, we
require a way to deal properly with the concept of particle point charges in the
context of a continuous field theory. We can define the charge density, ρ, for a
collection of point particles as

ρ ≡
∑
i

qiδ(x− xi), (2.124)

where δ(x) = δ(x1)δ(x2)δ(x3) is the Dirac delta function, defined via∫ x0+δ

x0−δ

f(x)δ(x− x0) dx = f(x0).

The total charge in a volume, Q ≡
∑

i qi, is clearly the volume integral of the
charge density:

Q =

∫
dV ρ =

∑
i

qi. (2.125)

This is not surprising, of course, but shows our definitions are consistent.
From the above, we may identify dq ≡ ρdV . Note that q (and thus Q) is a

scalar by its definition [see Eq. (2.98)], and therefore so is dq. On the other hand,
ρ is not a scalar; only the combination ρdV is. If we multiply by the vector dxµ,
we have

dq dxµ = ρ d4x
dxµ

cdt
. (2.126)

Note that dqdxµ is a four vector, and d4x = cdtdV is a scalar. Therefore ρdxµ

dt
is a four vector, so we define the current density four vector

jµ ≡ ρ
dxµ

dt
, (2.127)

which has components jµ = (j0, j). The definition as a current density is justified:
j0 is (up to a constant of c) simply the charge density, j0 = cρ, and the spatial
terms are j = ρv. It is sometimes convenient to factor out the unit charge q from
the definition of the current density, and define

J µ =
1

q
jµ. (2.128)

With these definitions, we can re-express the interaction contribution to the
action (2.98) in terms of the current density by writing q = ρ dV :

Sint. = −1

c

∫
ρdV Aµdx

µ = −1

c

∫
ρ
dxµ

dt
Aµ dV dt

= − 1

c2

∫
jµAµ d

4x. (2.129)
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2.7 Electrodynamics: Maxwell’s equations

We therefore identify the interaction contribution to the Lagrangian density as:

Lint. = −1

c
jµAµ, or Lint. = −q

c
J µAµ, (2.130)

which may be used for general charge distributions.
We shall now consider the law of the conservation of charge, by examining

the four-divergence of the current density, ∂µj
µ. Integrating this divergence over

some finite volume, V , we have∫
∂µj

µ dV =
∂

∂t
QV +

∫
∇ · (ρv) dV

=
∂

∂t
QV +

∮
S

ρv · n̂ dS, (2.131)

where QV is the total charge within the volume, and we used Gauss’ theorem
for the second term [see Appendix 2.9.2], with S the closed surface bounding
the volume and n̂ the unit vector normal to the surface. The first term on the
right-hand-side of Eq. (2.131) is the rate of change of the total charge contained
in the volume. The second term is the rate at which charge passes through the
surface of the volume (see Sec. 2.5.1). If we assert that the charge must be a
locally conserved quantity, then the these terms must sum to zero, leading to

∂µj
µ = 0, (2.132)

which is called the continuity equation. While we have asserted this fact based on
physical arguments, we shall later see that this law is closely tied to the principle
of gauge invariance.

Problem 2.14: In the rest frame of a charge distribution (K′), we have Jµ = (ρ0/c,0). Ob-
served from another frame (K), the charge is observed to move along the x-axis with velocity
v. (i) What is the current as observed in the K frame? (ii) As we saw above, the total charge
Q =

∫
dV j0 is a scalar, while the density, ρ = j0/c is not. Write the current in terms of the

density ρ in the current frame.
Answer (2.14): i: (cρ0γ, vρ0γ, 0, 0), ii: (cρ, vρ, 0, 0)

2.7 Electrodynamics: Maxwell’s equations

We now seek the set of equations that govern the evolution of the Aµ fields
themselves. To construct the required action, noting the principles we discussed
above, we may consider scalar functions of the fields Aµ and their first derivatives
∂νAµ. Further, since from experience, we expect the the electromagnetic fields
to obey the superposition principle, we restrict our consideration to terms that
are quadratic in the Aµ fields. Finally, since the equations of motion we found
before were gauge invariant, we shall consider only terms which are themselves
gauge invariant.
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The terms proportional to AµA
µ or ∂µA

µ are not gauge invariant. Under the
gauge transformation Aµ → Aµ + ∂µθ [Eq. (2.107)], they become

AµA
µ → AµA

µ + 2Aµ∂
µθ + ∂µθ∂

µθ, and

∂µAν → ∂µAν + ∂µ∂νθ.
(2.133)

The anti-symmetric combination Fµν = ∂µAν − ∂νAµ (2.115), however, can be
written purely in terms of the fields E and B, which are gauge invariant. There-
fore, the scalar FµνFµν (often written as F 2 for brevity) is the only scalar quantity
that is both gauge invariant, and second-order in the field.

Therefore, the term in the Lagrangian involving only the fields may be

LF =
−1

4
FµνFµν =

1

2
(E2 −B2). (2.134)

The factor 1/4 is arbitrary, and corresponds to a choice of units. Combining
with the interaction term from Eq. (2.130), the total Lagrangian including all
field terms is

L = −1

c
jµAµ − 1

4
FµνFµν . (2.135)

This is often termed the Maxwell Lagrangian.
To determine the field equations, we apply the Euler-Lagrange condition

(2.54) with ϕ = Aν . We have (see Problem 2.15)

∂L
∂(∂µAν)

= −Fµν , and
∂L
∂Aν

= −1

c
jν , (2.136)

so the field equations are

∂µF
µν =

1

c
jν . (2.137)

To write these in three-dimensional form, we evaluate (2.137) with ν = 0 and
ν = {1, 2, 3}, respectively, resulting in:

∇ ·E = ρ, and ∇×B =
1

c

(
j +

∂E

∂t

)
. (2.138)

These are of course Gauss’s law and Ampère’s law; we thus recognise Eq. (2.137)
as the inhomogeneous Maxwell equations. To summarise, in the covariant nota-
tion, the Lorentz force law and Maxwell’s equations can be summarised with

dpµ

ds
=

q

c2
Fµνuν , ∂µF̃

µν = 0, and ∂µF
µν =

1

c
jν . (2.139)

Problem 2.15: Derive the derivative ∂F2

∂(∂µAν)
= 4Fµν , required in Eq. (2.136).
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2.7 Electrodynamics: Maxwell’s equations

Solution (2.15): For brevity, write ∂µAν ≡ tµν . Then,

F
µν

Fµν = η
αµ

η
βν

FαβFµν = η
αµ

η
βν

(tαβ − tβα)(tµν − tνµ)

= η
αµ

η
βν

(2tαβtµν − 2tαβtνµ) ,

where we used the symmetry of the metric ηµν = ηνµ, and the fact that we may relabel the dummy

indices (µ ↔ ν, α ↔ β). Noting that
∂tµν
∂tσρ

= δσµδρν is zero unless µ = σ and ν = ρ,

∂

∂tσρ

(
η
αµ

η
βν

tαβtµν

)
= η

σµ
η
ρν

tµν + η
ασ

η
βρ

tαβ = 2t
σρ

.

Therefore

∂

∂tσρ

(
F

µν
Fµν

)
= 4

(
t
σρ − t

ρσ)
=⇒

∂

∂(∂σAρ)

(
F

µν
Fµν

)
= 4F

σρ
.

2.7.1 Gauge invariance and charge conservation

The gauge invariance and the charge conservation in electrodynamics are intrin-
sically linked. In the full quantum field theory, it turns out that the conserved
Noether current (2.77) associated with the gauge invariance (2.107) is just the
electric charge current (2.127). Without a concept of the gauge symmetry for
the matter part of the problem (i.e., the point charges or charge density), this
doesn’t quite work. Even without the full quantum theory, however, we can still
show that these concepts are closely connected.

Under the gauge transformation Eq. (2.107), the variation of the Maxwell
Lagrangian (2.135) is

δL =
−1

c
jµ∂µθ, (2.140)

which follows simply due to the explicit gauge invariance of the F 2 term (2.134).
The corresponding contribution to the action can be written as

δS =
−1

c2

∫
jµ ∂µθ d

4x =
1

c2

∫
(∂µj

µ) θ d4x, (2.141)

where we used integration by parts, and assumed the current terms go to zero at
infinity. Since, by assertion, the gauge function θ may be any function of time
and coordinates, it follows that this term is zero only if ∂µj

µ = 0. Therefore,
the gauge invariance implies the continuity equation (2.132), which, as discussed
above, is the condition for local charge conservation.

2.7.2 Energy of the electromagnetic field

From Maxwell’s equations (2.121) and (2.138), we can form the expressions

E · ∇ ×B =
1

c
E ·

(
∂E

∂t
+ j

)
, and B · ∇ ×E = −1

c
B · ∂B

∂t
. (2.142)
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Subtracting these, and making use of the vector identity14, we have

1

2

∂

∂t

(
E2 +B2

)
= −E · j −∇ · [cE ×B]. (2.143)

It is customary to define the term in brackets as the Poynting vector:

S ≡ cE ×B. (2.144)

To elucidate the physical meaning of this equation (2.143), we shall integrate it
over a volume, V . Recognising the current density as being that from a collection
of point particles [Eq. (2.124)], j(x) =

∑
qiviδ(x− xi), we have

∂

∂t

∫ (
E2 +B2

2

)
dV +

∑
i

qiE · vi = −
∫

∇ · S dV. (2.145)

From Problem 2.10, the rate of change in kinetic energy of a particle of charge q
in an electromagnetic field is given

dEpart.
dt

= qE · v.

Therefore, we may express Eq. (2.145) as

∂

∂t

(∫
U dV +

∑
Epart.

)
= −

∮
S · dΩ, (2.146)

where we used Gauss’ theorem [Eq. (2.167) in the appendix] for the term on the
right-hand-side, with dΩ being the surface element. If the volume is taken to
include all space, and the fields are assumed to go to zero at infinity, then the
surface integral is zero, and it’s clear that

U ≡ E2 +B2

2
(2.147)

can be interpreted as the energy density of the electromagnetic fields, assuring
the energy conservation. If the volume is taken to be finite, then the term on
the right-hand-side is non-zero. In this case, it clear that the Poynting vector, S,
should be interpreted as the energy density flux (energy transfer per unit area,
per unit time).

2.7.3 Electromagnetic stress-energy tensor

We will now calculate theMaxwell stress-energy tensor, in the source free (jµ = 0)
case. From Eq. (2.87),

Tµν =
∂L

∂(∂µϕ)
∂νϕ− ηµνL,

14∇ · (a× b) = b · ∇ × a− a · ∇ × b; see Appendix 2.9.2.
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2.8 Electromagnetic waves and radiation

where the Maxwell Lagrangian is given by Eq. (2.135). Using the derivatives
we already computed (2.136), with the field being the components of the vector
potential (i.e., ϕ = Aλ) the expression is readily found

Tµν = −Fµλ∂νAλ +
1

4
ηµνF ρλFρλ. (2.148)

Note, however, that this expression is not symmetric, and is also not gauge
invariant.

It’s clear that we could form a symmetric tensor by adding to Eq. (2.148) a
term of the form

Fµλ∂λA
ν . (2.149)

But is this justified? Note that, in the absence of charges, the equations of motion
read ∂λF

µλ = 0. Therefore, we can write:

Fµλ∂λA
ν = ∂λ(F

µλAν). (2.150)

Since this term is of the form of Eq. (2.97), we may safely add it to the Tµν

tensor (i.e., it does not break the condition ∂µT
µν = 0 ). With this, we arrive at

the symmetric stress-energy tensor:

Tµν = FµλF ν
λ +

1

4
ηµνF ρλFρλ. (2.151)

From the relations in Sec. 2.6.3, the temporal component, which should corre-
spond to the energy density, is readily found to be

T 00 = E2 +
1

4
F 2 =

1

2

(
E2 +B2

)
, (2.152)

exactly as expected from classical electromagnetism, Eq. (2.147).
As a final note, we mention that we could have essentially guessed the form

of the stress-energy tensor from the knowledge that the energy density is second-
order in the electric and magnetic fields. There are only two tensors we can form
from the F (or A) fields that are gauge independent, symmetric, and second-order
in the fields:

Tµν = aFµλF ν
λ + b ηµνF 2.

The constants a and b may then be relatively easily found from the requirement
that T 00 equals the well-known energy density (2.147).

2.8 Electromagnetic waves and radiation

One important thing to notice about Maxwell’s equations is that there are non-
trivial solutions, even in the case where there are no charges. Such solutions are
known as free (or vacuum) electromagnetic waves.
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In the absence of charges, we have

∂µF
µν = 0

=⇒ ∂2Aν − ∂ν∂µA
µ = 0.

(2.153)

As we discussed above, we are free to choose the Lorenz gauge Eq. (2.109), where
∂µA

µ = 0. In this case, the above equation becomes (multiplying by c2):

c2∂2Aν =

(
∂2

∂t2
− c2∇2

)
Aµ = 0, (2.154)

which you may recognise as the wave equation (equivalent to the Klein-Gordon
equation (2.66) with µ = 0). It can be seen that functions of the form

Aµ(xµ) = ϵµa0e
±ikµx

µ

(2.155)

are solutions, where ϵµ is a unit four-vector termed the polarisation vector, a0
is an arbitrary coefficient (called the amplitude), kµ is an arbitrary four vector,
and it is understood that the real part of the solution is taken. If we write the
components of this vector as kµ = (ω/c,k), then these solutions may be identified
as plane waves of angular frequency ω, and wavevector k (which are related to
the frequency f = ω/(2π) and wavelength λ = 2π/|k|). The solution describes a
plane wave travelling along the direction k, with speed c.

Of course, general solutions may be much more complicated. However, since
any linear combination of plane wave solutions (2.155) is also a solution, general
solutions may be formed from linear combinations of plane wave solutions with
different amplitudes and kµ vectors (Fourier theorem). Solutions that can be
written in the form of Eq. (2.155) – i.e., that involve only a single frequency ω –
are said to be monochromatic.

From the wave equation (2.154), we find the condition on kµ:

kµkµ = 0. (2.156)

Combining this with the definition of the components of kµ, we see ω2 = c2k2,
and

k =
ω

c
n̂, (2.157)

where n̂ is the unit vector along the direction of propagation of the wave. Fur-
ther, taking the derivative of the solution (2.155), and noting the Lorenz gauge
condition ∂µA

µ = 0, we find

kµϵ
µ = 0, (2.158)

so the polarisation must be perpendicular to the direction of propagation.
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2.9 Appendix

2.9.1 Unit systems for electrodynamics

In defining the units for electrodynamics, one must make choices in linking the
definitions of charges and field strengths to the usual mechanical units of length
L, mass M , and time T . For example, in Coulomb’s law:

F = ke
q1q2
r2

,

the value taken for ke depends on the definition of charges in terms of the usual
mechanical units (and similarly for magnetic fields). In SI units, for example,
charges are measured in Coulombs, and ke is taken to be 1/(4πε0). It’s important
to keep track of the unit system being used; in electrodynamics, not only do the
values of constants change, but the form of the equations change also.

Within the SI system of units, the vacuum permittivity ε0, and vacuum per-
meability µ0, are linked via15

ε0µ0 = 1/c2, and µ0 =
4παℏ
e2c

, or 4πε0 =
e2

ℏc α
. (2.159)

The SI system is a so-called rationalised unit system, where no 4π factors appear
in Maxwell’s equations; instead they appear in the inverse-square force laws (i.e.,
Coulomb’s law and the Biot-Savart law). It is also possible to choose a non-
rationalised unit system, where the 4π factors do not appear in the inverse-square
force laws, but instead in Maxwell’s equations.

Particularly in theoretical physics, it is extremely common to work with units
systems where ε0 and µ0 do not appear in the equations (this can be thought
of as by defining units in which ε0 = µ0 = 1, or by absorbing them into the
definition of the charges/fields). Two common choices are the Heaviside-Lorentz
system, which is a rationalised system, and the Gaussian system, which is non-
rationalised. The Gaussian system was very common, particularly in older text-
books. The Heaviside-Lorentz system (rationalised) is widely used in relativistic
and particle physics. In the Gaussian system, the Coulomb law constant is taken
to be ke = 1, meaning charges have dimension

√
M.L3/T . The Heaviside-Lorentz

unit system is similar, except that it is rationalised; the constant is taken to be
ke = 1/(4π). In both the Heaviside-Lorentz and Gaussian systems, the electric
and magnetic field have the same units as each other; in the SI system, they
differ by the velocity units L/T .

15Of these constants, only the fine structure constant, α ≈ 1/137.035 999 084(21) is a mea-
sured value. The elementary charge is defined exactly as e ≡ 1.602 176 634×10−19 C. Note that
with this definition, e = |e| and the electron has charge −e (it is common to use the opposite
convention). Similarly, the speed of light is defined exactly c ≡ 299 792 458m s−1, and Planck’s
constant as h ≡ 2πℏ = 6.626 070 15× 10−34 J s.
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In the different systems, Coulomb’s law takes the form:

F =
1

4πε0

q1q2
r2︸ ︷︷ ︸

SI

=
1

4π

q1q2
r2︸ ︷︷ ︸

HL

=
q1q2
r2︸︷︷︸

Gaus.

, (2.160)

and the form of the Lorentz force law:

F = q(E + v ×B)︸ ︷︷ ︸
SI

= q(E +
1

c
v ×B)︸ ︷︷ ︸

HL,Gaus.

. (2.161)

In all systems, B = ∇×A, though

E = −∂A
∂t

−∇A0︸ ︷︷ ︸
SI

= −1

c

∂A

∂t
−∇A0︸ ︷︷ ︸

HL,Gaus.

. (2.162)

The three-vector form of Maxwell’s equations are:

SI:

∇ ·E =
ρ

ε0

∇×B = µ0 (j + ε0∂tE)

∇×E = −∂tB

∇ ·B = 0

Heaviside-Lorentz:

∇ ·E = ρ

∇×B =
1

c
(j + ∂tE)

∇×E = −
1

c
∂tB

∇ ·B = 0

Gaussian:

∇ ·E = 4πρ

∇×B =
1

c
(4πj + ∂tE)

∇×E = −
1

c
∂tB

∇ ·B = 0.

(2.163)

In the four-vector form:

∂µF
µν = µ0j

ν︸︷︷︸
SI

=
1

c
jν︸︷︷︸

HL

=
4π

c
jν︸ ︷︷ ︸

Gaus.

, (2.164)

where, if Fµν = (−E,B) in the Heaviside-Lorentz and Gaussian systems, then
Fµν = (−E/c,B) in the SI system. The Bianchi identity ∂[λFµν] = 0, or

∂µF̃
µν =

1

2
ϵµνρσFρσ = 0,

remains the same in all systems.

2.9.2 Some vector calculus identities

The fundamental theorem of calculus∫ x2

x1

∂xϕ(x) dx = ϕ(x2)− ϕ(x1). (2.165)
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may be generalised to vector gradients∫ x2

x1

[∇ϕ(x)] · dl = ϕ(x2)− ϕ(x1). (2.166)

The generalisations for vector functions are known as the divergence theorem (or
Gauss’ theorem), and Stokes’ theorem.

For a vector function A(x) within a volume V bounded by a closed surface
S, the volume integral of the divergence of A is related to the surface integral of
the component of A (outwardly) normal to the surface S as:∫

V

(∇ ·A) dV =

∮
S

A · dS (2.167)

dV = d3x = dxdydz is the volume element, and dS = n̂dS is the surface (area)
element normal to the surface. This is known as the divergence theorem, or Gauss’
theorem. This can be generalised to higher dimensions:∫

Ω

∂µA
µ dΩ =

∮
ω

AµNµdω, (2.168)

where Ω is the generalised (e.g., 4D) volume, ω is the closed surface bounding
the volume, with generalised (e.g., 3D) surface element Nµdω, where Nµ is the
unit vector outwardly normal to the surface.

Similarly, for a vector function A within an arbitrary open surface S, the
surface integral of the component of the curl of A normal to the surface is related
to the line integral along L, the closed path which bounds the surface S as∫

S

(∇×A) · dS =

∮
L

A · dl, (2.169)

where dl is the line element of the path L.
Another useful identity is Green’s theorem,∫

V

(
ϕ∇2ψ − ψ∇2ϕ

)
dV =

∮
S

(ϕ∇ψ − ψ∇ϕ) · dS

=

∮
S

(
ϕ
∂ψ

∂n
− ψ

∂ϕ

∂n

)
d|S|, (2.170)

which follows from Gauss’ theorem, where dS = n̂d|S|, and ∂/∂n is the (outward)
normal derivative at the surface S.

A number of other identities are provided for convenience:
a× (b× c) = b(a · c)− c(a · b)
[(∇ · a)b] = (a · ∇)b+ (b · ∇)a

∇(a · b) = (a · ∇)b+ (b · ∇)a+ a× (∇× b) + a× (∇× a)

∇ · (a× b) = b · ∇ × a− a · ∇ × b

∇× (a× b) = a(∇ · b)− (a · ∇)b+ (b · ∇)a− b(∇ · a)
∇× (∇× a) = ∇(∇ · a)− (∇ · ∇)a

∇ · (∇× a) = ∇× (∇ϕ) = 0.

(2.171)
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With the index notation, and Einstein summation convention, we have

∇ · a = ∂ia
i and a× b = ϵijkaibj (2.172)

where ϵ is the anti-symmetric Levi-Civita symbol (note that we have ϵ123 = +1,
and we avoid defining ϵijk).
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