Lectures in physics B. M. Roberts — 08/07/2024

1 Classical Mechanics

These notes are designed to give an overview of the most important topics in
classical mechanics as briefly as possible, and are by no means complete. There
is an emphasis on the underlying concepts and physical principles of the theory,
which will serve as the necessary background for a solid understanding of field
theory and quantum mechanics. Some prior knowledge is assumed, including a
basic knowledge of calculus, and some familiarity with elementary concepts of
mechanics (meaning of forces, energy, coordinates etc.). I recommend the books:

e L. D. Landau and E. M. Lifshitz, Mechanics (1976). A very elegant coverage of
classical mechanics that heavily influenced these notes. Appropriate at a slightly
more advanced level.

e H. Goldstein, C. Poole, and J. Safko, Classical Mechanics (2001). One of the
standards, for good reason; very solid and thorough coverage.

e L. Susskind and G. Hrabovsky, Classical Mechanics (2014). Not exactly a text-
book, not exactly a popular science book; somewhere in between. An enjoyable
read at an introductory level.
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1.1 Principles of classical mechanics

The aim of classical mechanics is to describe physical systems, and determine
their evolution through time. At the core of classical mechanics are three basic
assumptions:

1. Mechanical systems are deterministic,
2. The universe is homogeneous and isotropic,
3. The laws of physics are the same in all (Galilean) inertial reference frames.

A system is deterministic if, given enough information, it is possible (at least in
theory) to completely determine its future, i.e., to the specify the evolution of the
system through time. Similarly, a system is considered reversible if the same holds
in reverse, and we can completely determine its past; we shall soon see that this
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follows from the assumptions of determinism and homogeneity. The assumption
that the universe is homogeneous means that the laws of nature do not depend
explicitly on position, or in other words, there is no preferred location in space.
We also assume the universe is homogeneous in time, meaning the laws of nature
do not depend explicitly on time; this is usually wrapped into the homogeneity
assumption. The assumption that the universe is isotropic means that the laws
of nature do not depend explicitly on orientation, or that there is no preferred
direction in space. The third assumption is the (Galilean) principle of relativity
— all motion is relative, and there is no special or universal rest frame.

We will focus most of our discussion on the dynamics of particles. By particle,
we mean a body whose shape and dimension can be neglected in describing
its motion. To define a system of particles in regular 3-dimensional space, we
may designate each of their locations with a position vector, x, with Cartesian
coordinates x, y, z. For a system of N particles, there are 3N independent
coordinate variables (called the degrees of freedom). To describe the motion of
particles, we also consider the rate of change of position, called velocity, which
we denote
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We may also consider the rate of change of velocity (acceleration), a = &, and so
on. As we shall see, however, the accelerations will be determined if we know the
set of 3N coordinates {x;}, the set of 3V velocities {&; }, and some function which
defines the physical laws of the system, known as a potential function V(x, ),
the meaning of which will be discussed in the coming sections. The central
determinism assumption of classical mechanics is that this information completely
specifies the system of particles. If we know the 6N coordinate/velocity variables
at any moment in time (called the state of the mechanical system), then we
may determine the state of the system at any point in the future, assuming the
potential function is known. Further, from the reversibility assumption, it also
means we can determine the state at any point in the past. The set of equations
that specifies the relations for the coordinates and velocities of the system are
called the equations of motion. We shall soon see that these are, in general, a set
of second-order differential equations.

For general problems, the set of coordinates may not be the Cartesian coordi-
nates; in many situations, a different choice may be much more convenient. Any
set of M quantities (¢1, ga, - ..qar) which completely defines the configuration of
a system with M degrees of freedom are called the generalised coordinates of the
system. It is possible that M < 3N, for example, when there are constraints on
the motions of the system; this will be easier to discuss when the examples arise
in the coming sections. Likewise, the set of their time derivatives, {¢;}, are the
generalised velocities.
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Figure 1.1: Two valid (deterministic and reversible) configuration paths, and one
invalid path. (These are not meant to be realistic, just illustrative.)

We may consider the phase space of generalised positions and velocities.! We
can then imagine the physical system tracing some path through this phase space
as time progresses. The central assumptions of determinism and reversibility
imply that paths in this phase space may not cross. If they could cross, then
there would be two possible “futures” (or pasts) from the crossing point, which
is not allowed, see Fig. 1.1. Though the paths cannot cross, it is completely
possible to have closed cycles in the phase space. As we shall investigate further
in the coming sections, the emergence of closed cycles implies some conservation
law — i.e., it implies that there is some quantity (generally, some function of gs
and ¢s) that remains constant throughout the evolution of the system.

As a final note before we begin the study proper, we mention that the specific
set of coordinates chosen (called a reference frame) is not unique. We can always
change reference frames by shifting or rotating our coordinate axis:  — a’. We
may also make more general coordinate transforms that depend on time. For
example, consider reference frames K and K’, specified by coordinates = and x’
respectively, where K’ moves relative to K with velocity V. The relation is:

r—x' =x-Vt
, (L1)
t—t =1t.
These equations define what is called a Galilean transformation. Reference frames
that are linked by Galilean transformations are considered inertial frames.? While
there is no absolute frame of reference for coordinates, time is an absolute. The
constancy of time between frames of reference is of one of the central assumptions
in classical mechanics, though does not hold in relativistic mechanics (we will
return to relativity in our study of classical field theory).

1Usually, the term phase space actually refers to the space of generalised positions ¢ and mo-
mentums p, rather than velocities. The distinction is important, though not for our arguments
here. We will return the concept of generalised momentum in the coming sections.

2More concretely, an inertial frame is one in which free particles do not accelerate.
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1.2 Principle of least action

The aim of classical mechanics is to describe the evolution of a system, described
by the set of generalised coordinates {g¢;}, and their derivatives {¢;}. We invoke
the first of our assumptions (determinism), and presume that there is a unique
equation that describes this evolution.

It seems reasonable to assume that the path the system will take will be op-
timal, with respect to some quantity. For example, we might guess that particles
would take the shortest path (i.e., optimal with respect to length). It doesn’t
take much experimentation, however, to see that this is not the case (think of
throwing a ball in the air — it certainly doesn’t take the shortest path to its
destination).

Without knowing anything about its form, we call the function that should
be optimised, the action, denoted S. Note that the action is not a simple local
function of coordinates; it depends on the values of ¢ and its derivatives along
the entire path of motion (see Fig. 1.2). From the principal of locality — that
physical systems should be influenced only by their immediate surroundings — we
expect the physical laws should ultimately be described by only local functions.?
As such, the action is itself typically written as the integral of another function,
called the Lagrangian, L:

ty
S = L(q,q,t)dt. (1.2)
to
Aside from the locality argument, we may consider this simply convention for
now. The task to completely specify the dynamics of the system, then, is to find
the set of functions g;(t), which minimise the action*. This is called the principle
of least action, or Hamilton’s principle.

We shall now show how to derive the set of differential equations that will
determine these paths. For simplicity, we will work in the case of a single particle,
so there is only one function, ¢(t), that we must find, and generalise to a system
of particles later.

Suppose ¢(t) is the function which minimises the action. Define another path
between the same initial and final points

q(t) = q(t) + dq(1), (1.3)

where dq (called a wvariation) is a small shift in the path, as shown in Fig. 1.2.
By construction, the alternate path is subject to the constraints G(tg) = q(to),
and G(t;) = q(ty), or in other words,

Salte) = dalt;) = 0. (14)

3There’s a short discussion on the principal of locality in Appendix 1.9.1.
4Technically, we seek an extremum (stationary point), which may be minimum or maximum.
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Figure 1.2: Path that minimises the action, ¢(¢), and its variation, dq(t).

The resulting variation in S is

0S5 = S(qg+ dq) — S(q)

t‘f tf
- / Llq+ 64,4+ 54, 1) dt — / L(g.q.t)dt, (1.5)

to to

where 6¢ = d(dq)/dt. We take dq to be an infinitesimal variation, and expand
08 to first-order in §¢.> For S to be a minimum, this variation must vanish:

S = / <6q—|— (5q> dt = 0. (1.6)

Using integration by parts for the second term, we have

(0L dOL OL _ |ts

0

(1.7)

From Eq. (1.4), the integrated term is zero. The remaining term must be zero
for all functions dq, implying the integrand must be zero:

d oL OL
4oL _ oL 1.
dt 9q dq (18)

For the case of IV particles, the trajectory of each particle satisfies this equation:

d oL 0L
———=— (i=12,...,N), 1.9
dt 86]1 86]1' (Z ) ( )
where the Lagrangian is, in general, a function of all coordinates, velocities,
and time. These are called the Euler-Lagrange equations. If the Lagrangian of a

system is known, these equations define the path taken by particles in the system,

5This is an application of the calculus of variations; the formulas follow from the definition
of the derivative, and the chain rule. If you’re unsure, refer to the appendix in Sec. 1.9.2.
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and give the equations of motion. We remind that, so-far, we have said nothing
about what the Lagrangian actually is.

As a final note, consider what happens when we add a term to the Lagrangian
that is a total time derivative of some function of coordinates and time:

La,d,t) = D(0:4.0) = La,4.0) + /(a0 (1.10)

Notice that the action (1.2) simply changes by a constant term:

ty te
S’=S+/ 4 = s 4" (1.11)
. dt to

0

The constant doesn’t change the condition for a minimum (65 = 0 and §5’ =
0 are equivalent). Therefore, the addition of such a term cannot impact the
dynamics of the system, and so the Lagrangian is defined only up to the addition
of a total time derivative of any function f(q,t).

1.3 The Lagrangian

We shall now consider the form the Lagrangian must take (at least, for particles
in an inertial reference frame), resting entirely on a few intuitive assumptions
about nature. To do this, we shall invoke our next assumption: that the universe
is homogeneous and isotropic.

We first consider the case of a single free particle. The homogeneity of space
and time implies that there can be no explicit position & or time ¢ dependence in
the Lagrangian — the dynamics of a closed system should not depend on where or
when they are examined. The Lagrangian must therefore be a function of velocity
. Further, the isotropy of space means the Lagrangian must also be independent

of the direction, and must therefore be only a function of the magnitude, &2 = v

L =L(v?). (112)

The Euler-Lagrange equations (1.9) are particularly simple in this case,’

d /0L

since the Lagrangian is independent of x so we have dL/0x = 0. From this, we
see that OL/0v is a constant. Since L is a function only of %, this implies the
velocity is constant:

d

—v =0. 1.14

o (1.14)
6The derivative of a scalar with respect to a vector may be defined d¢/da = Y-, (d¢/da;)é;,

where €; is the unit vector parallel to the ¢ component of a. The special case of spatial

derivatives is called the gradient, or ‘grad’ and is written d¢/de = V.




1.3 The Lagrangian

In other words, in the absence of any potential terms, the velocity of a particle
must stay constant. This is the law of inertia (or Newton’s first law). It’s
important to note that we have made only the barest of assumptions to arrive
at this conclusion: namely that physical systems are deterministic, the dynamics
is such that some function (which we called the action) was optimised, and that
the universe is homogeneous and isotropic.

We so far have determined that the Lagrangian for a free particle must be a
function of the magnitude of the velocity only. To go further, we make one more
assumption and invoke the (Galilean) principle of relativity — that coordinates
change according to Galilean transformations (1.1) when changing between iner-
tial reference frames”, and that the equations of motion have the same form in
every inertial frame. Consider two inertial frames of reference, moving relative
to each other by infinitesimal velocity dwv, such that v = v + év. Under our
assumptions, I’ = L(v"?) must differ from L(v?) by at most a total time deriva-
tive. We have, neglecting (§v)? terms, L(v'?) = L(v? 4+ 2§v - v), which can be
expanded as

L
L(v"?) = L(v?) + 8?112)251; ‘v, (1.15)
The equations of motion will remain unchanged only if the final term of this
equation is zero (evidently it is not), or if it’s a total time derivative, as we saw
in Eq. (1.11). This term is a total time derivative only if it is linear in v (since
v = &), and so L/(v?) must be independent of velocity (i.e., a constant). We
arbitrarily set OL/d(v?) = m/2 and integrate to find
L5
L = —mv*. (1.16)
2
Any integration constant will not affect the equations of motion, and can be
discarded. The factor of m/2 is arbitrary so far, but we will call m the mass
of the particle. For a single free particle, the mass has no physical significance.
However, for a system of particles, each may have a different mass, and the ratios
will be physically meaningful (particularly as we discuss forces below).

We note that we did not explicitly invoke the assumption of reversibility.
Since the Lagrangian does not depend explicitly on time ¢, it follows that the
equations of motion remain the same on substitution ¢ = —¢. In this sense, the
reversibility follows from homogeneity.

Notice that, in this free particle case, we have

oL
ox
which you will recognise as momentum. We will generalise this now, because
it will turn out to be a very useful construction. If the system is defined by a

muv, (1.17)

7This final assumption does not hold in relativistic mechanics.
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generalised coordinates {g;}, then we can define a canonical momentum, p,

.ok 1.1
Pi= 5o (1.18)

which is also called the generalised momentum, or the momentum conjugate to
q. In general, this quantity is not simply mwv. For now, we may consider this
simply a definition; we will return to this in our discussion of symmetries. With
this, the Euler-Lagrange equations may be written:

dpi o oL

dt N 8qi'

We will now consider a closed system of several particles. By closed, we mean

that nothing outside the considered system may impact its dynamics. In this

case, the strict homogeneity /isotropy for each particle is broken, by the presence

of the other particles. Therefore, an extra term may appear in the Lagrangian

that depends on the positions and velocities of all the particles. We’ll call it the
potential, V':

(1.19)

1
L:ZQT’%”?—V(muwz,---,vl,vg,-.-), (1.20)

where the choice of negative sign is arbitrary. For simplicity, we’ll directly con-
sider the case for two particles; the arguments will hold generally. The equations
of motion can be determined from an application of Eq. (1.9). In this case, the
equation of motion for the ith particle is

oV

8£L’i ’
which you will recognise as Newton’s second law. We'll call the derivative term
on the right-hand-side the force on the ith particle. This justifies our choice for
the definition of the mass constant, m.

While the homogeneity for each particle is broken, the overall homogeneity
and isotropy assumptions still hold for the system on a whole. Therefore, as
before, there may be no explicit time dependence in the new potential term (it
may depend implicitly on time through the time-dependence of the positions).
Further, for the overall homogeneity/isotropy assumptions to hold, there can
be no explicit position dependence in the potential term, besides the relative
positions between particles. That is, the only position dependence allowed in V'
comes in the form of differences:

V(.’Ehmg,...)ZV(ml—ch,...). (122)

m;a; =

(1.21)

From this, without knowing anything else about about the form of V', we imme-
diately see that (in the case of a pair of particles), we have
ov._ oV

Z7 2 — . 1.23
oz Ooxo mia 1m2a2 ( )
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Figure 1.3: A small mass, free to slide inside a spherical bowl.

This states that forces between particles come in pairs, which are equal in mag-
nitude and opposite in direction; you will recognise this as Newton’s third law,
which we see is a direct consequence of the homogeneity of space. We can rest
assured that our formulation of mechanics encodes Newton’s laws of motion.

As a matter of definition, if a Lagrangian can be broken into terms which are
proportional to ¢2, we’ll call those terms the kinetic energy, and remaining terms
the (negative of the) potential energy. The choice of these terms is clear from the
link to Newton’s equations of motion, even if we haven’t formally defined energy
in the context of Lagrangian mechanics yet. In such cases, we write:

L=T-V, (1.24)

where the kinetic energy is T = (1/2) ", m;¢?, and V is the potential energy.

As a final remark, you might wonder if we can continue making such argu-
ments to work out an explicit form the V' in the same way as we did for a system
of free particles. The answer is we cannot, at least not without introducing new
assumptions. The form that V' takes will be called a (classical) physical theory;
any physical theory that obeys the above assumptions is equally valid, and it is
up to experiment to determine which is the correct description of nature.

1.3.1 Elementary examples

As a simple example showing to power of generalised coordinates, consider a
small particle of mass m, which is free to slide without friction inside a spherical
bowl of radius R as shown in Fig. 1.3. The bowl is centred at (x,y, z) = (0,0,0),
and the z-direction is taken directly upwards. Since the mass is confined to sit
on the curved plane of the bowl, we can use its two-dimensional position on this
plane to specify its location. Specifically, instead of the three coordinates z, y
and z, we can use two generalised coordinates, 6 (the angle defined such that
z =R — Rcosf), and ¢ (the angular position in the z-y plane). Further, under
the assumption that there is no initial velocity in the y direction, under the
rotational symmetry, we can further confine the particle to lie in the z-z plane,
meaning its position may be completely specified only by 6, with x = Rsin6.
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The kinetic energy of the particle is

1 R?
T=sm( +2°) = mTaZ, (1.25)

and if the potential energy is due to gravity, it is:
V =mgz = mgR(1 — cos0). (1.26)
The Euler-Lagrange equation is thus
. g .
0 = —=siné. 1.27
7 oin (1.27)

As you can see, it is much simpler to solve these equations using the generalised
coordinates than using Cartesian coordinates.

As an aside, if we make the further assumption that the angle be kept small so
that sin§ ~ 6, you may recognise the result as the equation for simple harmonic
motion. The solution in that case is sinusoidal oscillations in the displacement.
Substituting for x, the equation becomes & = —(g/R)x, with solution

x = xgcos(r/g/Rt). (1.28)

This gives the famous formula for the period of oscillation of an idealised pendu-
lum: T = 27w+/R/g.

1.4 Symmetries and conservation laws

In the above, we considered closed systems of particles. That is, systems where
anything (all the particles and interactions) that could impact the motion of the
particles was included in the system. The mechanisms of classical mechanics are
such that they can be applied in more general situations; we often can consider
some subset of a larger system as “the system”, and consider the effect of the
excluded particles as some “external” force (or interaction more generally). For
example, when determining the orbital dynamics of the earth around the sun, we
don’t need to consider the effect the earth has on the sun (at least to first order).
So the gravitational force of the sun on the earth can be taken as an external
interaction. It’s important to realise that, in such situations, the assumptions of
homogeneity and isotropy no longer hold. In reality, such situations are almost
always approzrimations, since there will be some back reaction on whatever is
producing the external interactions. If we included everything into the system,
these symmetries would be restored. The art of classical mechanics is to make
reasonable assumptions about what must be considered internal or external to
the system.

One concept that is extremely important in physics of all kinds, is that of
conservation laws. As a mechanical system evolves in time, there may exist some

10
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function of the generalised coordinates ¢ and ¢ that remains constant through-
out the motion, and depend only on the initial conditions. Such functions are
known as constants of the motion, or integrals of the motion, or simply as con-
served quantities. In this section, we will investigate the profound link between
symmetries and conserved quantities.

A transformation is any change we can make to a system. They are usu-
ally defined through mathematical operations on the system or set of chosen
variables. We will focus on continuous transformations, and in particular on co-
ordinate transformations, but most of the logic holds for more general cases. A
transformation is considered a symmetry if it leaves the dynamics unchanged.
To prove this, it suffices to show that it leaves the Lagrangian unchanged (up to
the addition of a total time derivative). As we shall see, it is a general rule that
for any symmetry in a physical system, there is a corresponding quantity that
is conserved. This is Noether’s theorem. We will first consider a few important
cases, and then show this for the general case.

1.4.1 Translation symmetry: momentum conservation
The first transformation we consider is a translation. We make a coordinate
change which shifts all the coordinates by some infinitesimal constant:

q—q =q+dq. (1.29)

It suffices to consider infinitesimal translations, as any finite translation can be
built up from many repeated infinitesimal ones — this is the assertion that transla-
tion is a continuous transformation. The corresponding change in the Lagrangian

OL
L= — - 0q; 1.
SL=3 5 5a (1.30)

If this translation is a symmetry, then §L = 0. Since dq is a arbitrary, we have
oL
S,
P 0q;

and so the Euler-Lagrange equations become:
d oL d
= — =0 1.31
dtzi o4, dtzi Pi=" (131)

where we used the definition of canonical momentum (1.18). For the case of
regular coordinates ¢ = x (and when the potential does not depend explicitly on
velocity), p; = mu; is the usual mechanical momentum. Since the time derivative
of momentum is zero, it is conserved. As we saw above, this is clearly a sym-
metry for a closed system, which shows that the total momentum is conserved

11
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for a closed system. This also follows from the combination of Newtons second
and third laws, which we saw above. It’s also clearly true in the case that the
potential does not depend on position, 9V/dz = 0. We can summarise this as:
translation symmetry implies momentum conservation. More generally, if a sys-
tem is invariant under translations in generalised coordinate ¢, then p = 9L/9q,
the canonical momentum conjugate to ¢, is a conserved quantity.

1.4.2 Time-translation symmetry: energy conservation

We now consider a translation in time:
t—t' =t+dt. (1.32)

The corresponding change in the Lagrangian is

oL
0L =~ 0t (1.33)

The condition for this to be a symmetry is 6L = 0. Therefore, time translation
is a symmetry if there is no explicit time dependence in the Lagrangian.
To investigate this, consider the total time derivative of the Lagrangian:

ar 9.0 T 9,1 ) T o

9

fz @'.+ +87L
= dt‘]z Diq; ot

d . OL
“q (ZPi%‘) + o (1.34)

where we used the Euler-Lagrange equations (1.19) to replace dL/dq, and the
canonical momentum (1.18) to replace 9L/9¢. We define a new quantity, called
the Hamiltonian (or the energy):

H=> pig — L. (1.35)

With this definition, the above equation reads:

dH oL
dt ot (1.36)

We this see that the Hamiltonian (or the energy) is conserved if the Lagrangian
has no explicit time dependence, which from Eq. (1.33), is implied if there is time
translation symmetry.

12
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N

Figure 1.4: Small rotation, €, about the z-axis.

The homogeneity of time implies energy is conserved for all closed systems.
Further, the above shows that energy is conserved any time the potential V' is
independent of time (since these will be invariant under time translations).

In the case where the Lagrangian is simply L = T — V', where T is a quadratic
function in ¢, the Hamiltonian is seen to be H = T 4+ V. Therefore, we can
recognise T as the kinetic and V' as the potential energies. Note that for more
complicated Lagrangians, it is not always simple or even possible to separate the
energy terms into kinetic and potential contributions; still, Eq. (1.35) defines the
link between the Lagrangian and the Hamiltonian.

1.4.3 Rotation symmetry: angular momentum conservation

The final explicit example we shall consider is a rotation about an axis. For now,
let’s consider an infinitesimal rotation around the z axis. It’s a quick geometry
exercise to see that the changes in the  and y coordinates are:

ox =—00y, doy=dfx, (1.37)

see Fig. 1.4. The generalisation is the cross-product
or =06 x r, (1.38)
where 40 is a vector with magnitude 66 that points along the axis of rotation.
Notice that directions, not just positions, change with this transformation. We

therefore must also update the velocity vectors, which change in the same way®:

v =80 x v. (1.39)

8Since v = &, dv = §(&), and &6 is independent of time.

13
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The corresponding change in the Lagrangian is

oL oL
6L = Z (ari o7y + o m) (1.40)

—Z (60 x ;) 4 p; - (60 x ;)]

:50-@;” X p;, (1.41)

where we used the Euler-Lagrange equations, and the permutation properties
of the cross-product. Therefore, the condition that the rotation is a symmetry
(0L = 0), implies that term om the right-hand-side 7 x p is a constant. We call
this quantity angular momentum:

l=rxp (1.42)
(some places use L or M). Rotational symmetry about an axis ¢ implies the
i-component of angular momentum is conserved.

1.4.4 General symmetries

In the general case, we define an infinitesimal transformation that may itself be
a function of coordinates:

dgi = fi(q)e, (1.43)

where the epsilon is to make explicit that we consider an infinitesimal shift. In
general, the velocities will also change under the transformation:

d (0g;)- (1.44)

Sin = =
4= 3

The general change in the Lagrangian is then

oL oL . .
oL = Z (8 og; + ad‘&h) = Z (Pidq; + pidd;)

%

Q
d d
T Zpi&h =% Zpifi(Q) € (1.45)

where we used Eqgs. (1.18) and (1.19) in the first line, and the product rule for
differentiation in the second. If the transformation is a symmetry, i.e., if L = 0,
then the time derivative of the term on the right-hand-side is zero, and thus

14



1.5 Hamiltonian formulation

this term is conserved. We can re-state this general result more concretely. If a
transformation d¢q; = f;(q)e leaves the Lagrangian unchanged, 6L = 0, then:

SL(f)=0 — %Q —0, (1.46)
where Q= Zpifi(Q)v (1.47)

which is a statement of Noether’s theorem. We shall return to Noether’s theo-
rem in our study of relativistic field theory, where it becomes a much stronger
condition.

1.5 Hamiltonian formulation

In Eq. (1.35), we defined the Hamiltonian, which is a function of ¢s and ps. As
we shall now see, this quantity is very important, and leads to a new formulation
of the equations of motion.

To see this, consider a small variation in H from Eq. (1.35)

0H =" (piddi + 0pids) — 0L (1.48)

3

oL oL
= i0Gi + 0piGi — 5 —0¢i — 5--0Gi
Z:(p i+ Opidi — 5204 aqiq>

= Z (pbdi; + 6pidi — Pida; — piba;) (1.49)
where we used L = L(q, ¢), and the Euler-Lagrange equations. At the same time,

we have o o
0H = —0¢; + =—p; 1.50
5 (G ot gpow) (1.50)
which holds for any general function of ¢gs and ps. Equations (1.49) and (1.50)
are equivalent. Equating these, and matching terms, we find

O0H O0H
= = —— 1.51
op; and p o (1.51)

i

which are Hamilton’s equations of motion; it’s interesting to note the near sym-
metry between the equations for ¢ and p.

This way of writing to equations of motion is called Hamilton’s formulation
of classical mechanics. Compared to the Euler-Lagrange equations of motion, we
now have twice as many equations, however, they are each first-order differential
equations, rather than second-order. In particular, certain problems become
much simpler to solve in the Hamiltonian formulation. This formulation also
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lends itself naturally to thinking about problems in the (p, q) phase-space, rather
than the coordinate space ¢, as was hinted at in the introduction. This is often
a very powerful and insightful way of treating problems.

1.6 Harmonic oscillator

Consider a Lagrangian of the form

mi?  k
- = 1.52
> i (152

L =

which (as we’ll see) corresponds to a classical harmonic oscillator, with 2 being
the displacement from the equilibrium, and k being the spring constant. It’s not

too difficult to check that if we make the change of variables ¢ = (mk)'/*2 and
define w = y/k/m, then the form of the Lagrangian becomes simpler:
2
q W o9
= — — —q~. 1.53
5 3¢ (1.53)
We may solve this by finding the Euler-Lagrange equations of motion:
j=—w?q. (1.54)

This differential equation is easy enough to solve; it implies sinusoidal motion
about ¢ = 0, with angular frequency w. The amplitude and phase are determined
by the initial conditions. Since this is a second-order equation, we require two
initial conditions, gg and ¢o.

This is also a good example for the simplicity offered by the Hamiltonian
formulation. The Hamiltonian can be found simply from Eq. (1.35):
w
2
Note that momentum is not conserved in this example, though the Hamiltonian
formulation makes it plain that energy is. Then, the Hamiltonian equations of
motion are:

H=>(p*+4¢%). (1.55)

¢=wp, and p= —wgq. (1.56)

It’s easy to verify that these are equivalent to the Euler-Lagrange version by
taking the time derivative of the first equation. But Hamilton’s formulation
makes the dynamics for p clear.

Since the energy is constant, Eq. (1.55) immediately tells us that the solutions
in (g,p) phase space plot out concentric circles, with the “radius” of the circle
corresponding to the energy, as shown in Fig. 1.5. The solution to the differential
equations are also sinusoidal, and it can be seen that, not only does g oscillate
around g = 0, but p oscillates around p = 0, with the same angular frequency w.
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9

75
&

Figure 1.5: Simple harmonic oscillator tracing closed paths in phase space. Each path
is for a constant energy. Each point on the plot corresponds to a possible set of (qo,po)
initial conditions; from there, a concentric circle will be traced.

1.7 Poisson brackets

Let f(p,q,t) be any function of coordinates, momentum, and time. The total
time derivative of f can be written as

af o B
d—{ f+z<f fipz>7 (1.57)

which from Hamilton’s equations, can be expressed:

df 5‘f of OH 0Og OH
dat Z (3% dp; O afﬁ) ) (1.58)

The construction on the right-hand-side proves to be useful so we designate it as
a Poisson bracket, defined generally:®

_ of dg  Of dg
{f7 9} = ; <6% O - 81),;8%) . (1-59)

In this case, time derivatives can be expressed:

af of
o= H S (1.60)

When it is not clear from context which variables are used for the derivatives,
these are given as subscripts. For example, the above (1.59) would be {f, g}4p.

Generally:
_ of og  Of 9y
{f,9}uw = El <8ui v, O, 0wy ) (1.61)

9Both curly braces {, } and square brackets [,] are commonly used to denote Poisson brackets.

17



1 Classical Mechanics B. M. Roberts

Clearly, the Poisson bracket is anti-symmetric: {A, B} = —{B, A}. It’s also
fairly clear to show the linearity properties:

{M,B} =XMA,B}, and {A+4+D,C}={A,C}+{D,C}. (1.62)
Also, from the product rule, we have:
{AB,C} = A{B,C} +{A,C}B. (1.63)
Finally, the Poisson brackets of the canonical variables are

{ai,4;} =0,  A{pi,p;} =0,  {a,p;} = dij. (1.64)

The above set of equations are in fact enough to define the Poisson bracket, and
can be used as a set of axioms.

The Poisson bracket proves a useful tool in many situations. Hamilton’s
equations can be readily expressed in this form.

4 = {qi, H}, pi = {pi, H}. (1.65)

When one of the functions is one of the canonical variables, the Poisson bracket
becomes a partial derivative with respect to the other:

af af
faqi = T a_ f,pz = a5 1.66
Uay=—g  Und=50 (1.66)
These can all be proven without much effort.

There are many useful properties of Poisson brackets. One of particular im-
portance is Jacobi’s identity:

{f7 {g’h}}+{gv{h7f}}+{h’ {fvg}}zo (167)

An important property of the Poisson bracket is that, if f and g are conserved
quantities (i.e., they are constants of the motion), then so is {f, g}. This is called
Poisson’s theorem, which can be proven by setting h = H in Jacobi’s identity.
As an aside, if you have studied quantum mechanics, you may have noticed
that the classical Hamilton’s equations (1.65) look identical to Heisenberg’s quan-
tum equations of motion. This is not simply a coincidence. It will be the case
that the quantum version of Poisson brackets become the commutation relations.

Problem 1.1: Prove Jacobi’s identity, Eq. (1.67).

Problem 1.2: Prove Poisson’s theorem.
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1.8 Generators of transformations

1.8 (Generators of transformations

Back in Eq. (1.37), we considered a small rotation of ¢ about the z-axis, and
saw the corresponding change in z,y, z was dx = —d0y, oy = §6x, 6z = 0. We
saw that, if the system was symmetric with respect to rotation around z, then
the z-component of angular momentum, !, = zp, — y,x, was conserved. It’s
instructive to take the Poisson bracket of the coordinates with respect to the
conserved [,

{z,l,} = -y, {y,.} ==z, {z1.}=0. (1.68)

Notice that this can be written:
00{x,l,} = dzx, 60{y,l.} =3dy, 0&0{z 1.} ==z (1.69)

In other words, the Poisson bracket of coordinates with [, give the expressions
for the change in those coordinates due to a rotation around the z axis (up to
the factor €). This of course generalises to rotations about an arbitrary axis. If
we instead rotate with 6r = §0 x r as in Eq. (1.38),10

{zil;} = Zeijkxk- (1.70)
k

In this sense, we can call the angular momentum vector the generator of rotations.
Also, for the momentum, we similarly have:

{pis 5} = €sjpn. (1.71)
k

This is the same, since momentum vectors transform under rotations the same
way as positions. The change in any quantity, f, about the i-axis may be written:

S5f = {F, L;}. (1.72)

This holds rather generally, as we’ll see. Above, we saw that invariance under
spatial translations implied momentum conservation. Consider, then, the Poisson
bracket of any function position with p,

{f(@),p} = %. (1.73)

Since the change in f under the transformation ¢ — ¢ + dq is 3—55(1, we have

6f =dq{f.p}. (1.74)

€ijk is the entirely anti-symmetric Levi-Civita symbol. It is equal to zero if any of the
indices repeat, +1 for any even permutation of (123), and —1 for any odd permutation. The
cross-product a X b = ¢ can be expressed ¢; = Z].k €ijka;b.

10
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We may recognise momentum as the generator of spatial translations. Doing the
same with time translation will show that the Hamiltonian is the generator of
time translations.

We may generalise this. Let G(g,p) be a general function of generalised coor-
dinates and momentum, defined such that it gives small changes to coordinates

6q; = {q:,G}, and op; = {p;, G}. (1.75)

This transformation may or may not be a symmetry. If it is a symmetry, then,
by definition, it cannot change the energy of the system, so dH = 0. In other
words, the condition that G represents a symmetry is

{H,G} =0. (1.76)
We could also write this the other way:
{G,H} =0, (1.77)

which, since H is the generator of time translations, tells us that G is constant.

1.9 Appendix
1.9.1 Principal of locality

Simply stated, the principal of locality says that systems are influenced only
by their immediate (i.e., local) environment. As an example, consider Newton’s
second law:

alt) = F(t)/m. (1.78)

It states that the acceleration of a particle at some time ¢ is proportional to the
force on the particle at the same time, t. We could just as well have an equation
where the acceleration depends on the force at some other time, ¢/, but this in
non-local:

a(t) = m.

In the same vein, the force on a particle at position « and time ¢ is proportional
to the gradient of the potential, V', at the same position & and time ¢,

F(z,t) = -VV(x,t), (1.79)
while locality forbids equations of the form
F(z,t) = ', t).

In classical mechanics, the concept of locality can be a little confused, and be-
comes more strongly defined in relativistic mechanics. This is since the potential,
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V, is typically due to some source (e.g., gravitational mass, or an electric charge)
which acts at a distance. The basic equations of classical mechanics are local,
though the theory of how the potential is formed often breaks locality. For ex-
ample, in Newtonian gravity, the gravitational potential instantaneously follows
the mass which produces it up to infinite distances away, and thus breaks local-
ity. This issue is removed within the framework of Einstein’s theory of relativity.
Similarly, Coulomb’s law of electrostatic forces (appears to) violate locality. This
issue is removed within the Maxwell’s classical theory of electrodynamics, which
we shall return to in our study of field theory.

1.9.2 Calculus of variations

The definition of the derivative for some function f(y) may be stated:

df _ ..~ Af
— = lim —

= . 1.

where Af = f(y + Ay) — f(y). For infinitesimal changes, we write Af — §f,
and Ay — Jdy, and we can write:

f

5f = (1.81)

where ¢ f is called the infinitesimal variation in f. If f is function of multi-
ple variables 1, x2, ..., each of which may depend on y, such that f(y) =
f(z1(y),z2(y), . . .), then, by the chain rule, we have

df  0f 0xy  Of Oxo
—_— = 4 ———= 4 ... 1.82
dy Oz Oy + Oxo Oy + (1.82)

Combining Eqs. (1.81) and (1.82), we have
_ o 8x1 Of Oxo

_9f ., af

which is the general formula for the variation in f.
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