PHYS4070 Worksheet. Week 2: Matrices and Eigenvalues

We could store a matrix using old C-style 2D array:

```
static const int dim = 2; //'static const': must be compile-time constant!
double x[dim][dim] = {0.5, 1.5, 2.5, 3.5};
for(int i=0; i<dim; i++){
    for(int j=0; j<dim; j++){
        std::cout << x[i][j] << ' ';
    }
    std::cout << '\n';
}
```

But, this requires array size to be known at compile time.
It also has all the pitfalls of old C-style arrays (raw pointers, no range checks etc.)
It's possibly to also use dynamically-sized C-style arrays, but there be dragons.

```
// Exactly equivalent to:
double y[dim*dim] = {0.5, 1.5, 2.5, 3.5};
for(int i=0; i<dim; i++){
    for(int j=0; j<dim; j++){
        std::cout << y[i*dim + j] << ' ';
    }
    std::cout << '\n';
}
```

- The 2D array is actually stored as a single chunk of memory (i.e. in 1 dimension), and [i][j] is just short-hand for (i*dim+j)
- Can do this using dynamic memory allocation too, but we will not; in c++ there are nicer ways
- In modern c++, we would not use a basic c-array, but instead use a class (data structure from a library). Examples below.

Using regular std::vector, wrap in a class

- We can however use an std::vector to store a 2D matrix, we just need to access the elements using the $i^{*} d i m+j$
- Example: consider following matrix:

```
std::vector<double> v{0.5, 1.5, 2.5, 3.5};
int dim = 2; // for a 2x2 matrix
for(int i=0; i<dim; i++){
    for(int j=0; j<dim; j++){
        std::cout << v.at(i*dim + j)<<" ";
    }
    std::cout<<'\n';
}
```

- In order to make things easier, we will make our own class that holds a matrix using std::vector to store data
- In real-world code, many such classes exist already, and we would use one of these matrix classes (e.g., from the great 'Eigen' library)
- But here, we will "re-invent the wheel", since it is a good learning exercise, and will greatly help you understand classes in c++
- Also: what we need for the assignment is very simple, we can code it in just a few lines

Worksheet tasks: part A

- I will give you solutions to this part at the end of Wednesday workshop; you may use your or my solution to continue on with part B for Thursday

1. Write a class to store a 2 D square matrix

- Use std::vector to hold data
- The constructor should take the dimension N as input, and create a vector of correct length (${ }^{*}$ N)
- Provide a member function to return .data() from vector, so we can access the c-style array (needed to interface with lapack)
- double* data() \{ return v.data(); \}
- Provide a function that allows us to read and edit the i,j element
- To edit, this must return a reference, e.g.,
- double \& at(int j, int j) \{ return v.at(i*dimension + j); \}
- This allows, e.g., $x=$ matrix.at(i, j); and matrix.at $(i, j)=x$;
- Provide operator overload of ' + ', that allows us to add two matrices together
- This must be a function that takes two matrices, and returns one matrix (function signature)

2. Write a function that takes in a matrix (class you created above) and find the eigenvalues and eigenvectors

- Assume the matrix is real and symmetric, so use LAPACK function DSYEV
- Documentation: http://www.netlib.org/lapack/explore-html/index.html
- In/out parameters listed below:

```
int dsyev_(
    char * jobz, // 'V' = compute e. values and vectors. 'N' = values only
    char * uplo, // 'U' = upper triangle of matrix is stored, 'L' = lower
    int * n, // dimension of matrix a
    double * a, // c-style array for matrix a (ptr to array, pointer to a[0])
    // On output, a contains matrix of eigenvectors
    int * lda, // For us, lda=n
    double * w, // array of dimension n - will hold eigenvalues
    double * work,// 'workspace': array of dimension lwork
    int * lwork, // dimension of workspace: ~ 6*n works well
    int * info // error code: 0=worked.
);
```

- This function should return the eigen values and vectors [eigenvectors are stored in a matrix (2D array)]
- Eigenvalues are sorted, and eigenvectors are normalised to 1 (via inner product)
- Normally, functions in c++ return only one thing. We have two options:
- A: Pass in/out parameters to function by reference like this:
- void solveEigenSystem(Matrix matrix, Matrix \&eigenvectors, Vector \&eigenvalues);
- This is typically frowned upon, since it makes code difficult to read (which value is input, which is output?)
- B: Define a class/struct that holds a matrix of eigenvectors and a vector of eigenvalues, (e.g., called MatrixAndVector), and returns this
- MatrixAndVector solveEigenSystem(Matrix matrix);
- Note: FORTRAN (language LAPACK is written in) uses column-major ordering to access 2D arrays, wile c and c++ use row-major.
This means $m[i][j]$ in $c++$ is $m[j][i]$ in FORTRAN.. so we often need to transpose the matrix before sending to LAPACK
- Our matrix is symmetric, so this doesn't matter, except for 'uplo'
- 'uplo': 'U' means upper triangle in FORTRAN is stored -- so lower in c++ [we can just fill entire matrix though]
- For other LAPACK functions, you can often just tell them the matrix is a transpose, so we don't need to waste time transposing it ourselves
- Don't forget extern "C" , and to declare the dsyev_ function. and the -llapack linker (compile) flag (you may also need the -lblas flag)
- Example:
// std::vector<double> matrix = ..
// Assume this std::vector contains our matrix

```
char jobz{'V'};
char uplo{'U'};
int dimension = ...; // N if we have NxN matrix
int lwork = 6 * dimension;
std::vector<double> work(lwork);
int info = 0; // will hold potential error message
```

// create a blank vector to store calculated eigenvalues:
std::vector<double> evals(dimension);
dsyev_(\&jobz, \&uplo, \&dimension, matrix.data(), \&dimension, result.vector.data(), work.data(),
// note: on INPUT 'matrix' is the input matrix. After dsyev_ runs, 'matrix' will now contain a
// check for errors
if (info != 0) \{
std::cout << "DSYEV returned error code: " << info << '\n';
\}

3. Use your code to calculate eigen values/vectors of simple 2x2 matrix

$$
m_{i j}=\frac{1.0}{i+j+1.0}
$$

- i,j range from 0 to 1
- Expected eigenvalues should be: $\{1.26759,0.0657415\}$
- With corresponding eigenvectors: $\{\{1.86852,1\},.\{-0.535184,1\}$.
- Note: Normalisation will be different with LAPACK

4. Quantum simple harmonic oscillator (optional)

- The Hamiltonian of 1D QSHO, in simplest units case, is

$$
H=\frac{\hat{p}^{2}}{2}+\frac{x^{2}}{2}
$$

- Use finite-difference method to solve Schrodinger eq over $x=[-5,5]$ by casting problem to matrix eigenvalue problem
- Encode derivative operator as a matrix: (... 1, -2, 1, 0, ...) / dx^2, dx = (xmax - xmin)/Nsteps
- Form full symmetric Hamiltonian matrix
- Use hard boundary condition
- Probably need at least a few hundred steps
- Compare eigenvalues to known energies: $\mathrm{En}=(\mathrm{n}+1 / 2)$
- We also have a full set of orthogonal wavefunctions (eigenvectors). These are not yet properly normalised: check that the first two wavefunctions (eigenvectors) are indeed orthogonal
- Plot First 3 wavefunctions - do the look how you expect?

Worksheet tasks: part B: Hydrogen

In the assignment, you are tasked with Solving Schodinger equation for a many-electron atom; here we will practise the procedure for the simplest case of hydrogen.

- The radial Hamiltonian for Hydrogen atom is:

$$
\begin{equation*}
H_{r}=\frac{-1}{2} \frac{\partial^{2}}{\partial r^{2}}-\frac{Z}{r}+\frac{l(l+1)}{2 r^{2}} \tag{1}
\end{equation*}
$$

- We will use a new very powerful method to solve the Schrodinger equation, by expanding the solutions over a basis of B-spline (basis) functions, b. (Use provided code to calculate B-splines)

$$
\begin{equation*}
P(r)=\sum_{j}^{N_{b}} c_{j} b_{j}(r) \tag{2}
\end{equation*}
$$

- Solve the Schrodinger equation for Hydrogen by solving the eigenvalue problem using DSYGV:

$$
\begin{gather*}
\sum_{j}\langle i| \hat{H}_{r}|j\rangle c_{j}=\varepsilon \sum_{j}\langle i \mid j\rangle c_{j} \tag{3}\\
\Longrightarrow H_{r} \vec{c}=\varepsilon B \vec{c} \tag{4}\\
H_{i j}=\langle i| \hat{H}_{r}|j\rangle=\int b_{i}(r) \hat{H}_{r} b_{j}(r) d r, \quad B_{i j}=\langle i \mid j\rangle=\int b_{i}(r) b_{j}(r) d r \tag{5}
\end{gather*}
$$

You can use any integration scheme for these integrals - it will be much easier if you store the values of the B-splines in an array before trying to do the integrals.

For the general case of

$$
H=-\frac{1}{2} \frac{\partial^{2}}{\partial r^{2}}+V(r)
$$

we have

$$
\begin{align*}
H_{i j} & =-\frac{1}{2} \int b_{i}(r) b_{j}^{\prime \prime}(r) d r+\int b_{i}(r) V(r) b_{j}(r) d r \tag{6}\\
& =+\frac{1}{2} \int b_{i}^{\prime}(r) b_{j}^{\prime}(r) d r+\int b_{i}(r) V(r) b_{j}(r) d r \tag{7}
\end{align*}
$$

(using integration by parts).
Integration by parts has two benefites: simpler and more stable to calculate first-derivatives, and H becomes manifestly symmetric (it would be symmetric anyway, except for numerical errors).

As described in lectures, discard the first two (index=0 and 1) B-splines, and the last one (index=n-1) to enforce the boundary conditions.

Use $\sim 30-60$ Bsplines of order $k=7$. You will have to choose good rO and rmax.

1. Compare energies for s and p states to expected

- Note: Biggest source of error likely comes from integration grid, r0, rmax, and num_stepd
- Since the H and B matrix sizes depend on number of B-splines used, NOT number of integration points, we can increase number of points without slowing down code very much!

2. Use expansion coefficients and B-splines to construct wavefunctions; check that they are properly normalised (they should already be)
3. Plot wavefunctions for $1 \mathrm{~s}, 2 \mathrm{~s}$, and $2 p$
4. Think about simple extension to this needed for assignment.

DSYGV parameters (very similar to DSYEV, can adapt previous code)

```
extern "C"
int dsygv_(
    int *ITYPE, // =1 for problems of type Av=eBv
    char *JOBZ, // ='V' means calculate eigenvectors
    char *UPLO, // 'U': upper triangle of matrix is stored, 'L': lower
    int *N, // dimension of matrix A
    double *A, // c-style array for matrix A (ptr to array, pointer to a[0])
        // On output, A contains matrix of eigenvectors
    int *LDA, // For us, LDA=N
    double *B, // c-style array for matrix B [Av=eBv]
    int *LDB, // For us, LDB =N
    double *W, // Array of dimension N - will hold eigenvalues
    double *WORK, // 'workspace': array of dimension LWORK
    int *LWORK, // dimension of workspace: ~ 6*N works well
    int *INFO // error code: 0=worked.
);
```


Example for using the provided B-spline code

```
#include "bspline.hpp"
#include <iostream>
int main(){
    double r0 = 1.0e-3;
    double rmax = 50.0;
    int k_spine = 7; // order of B-splines
    int n_spline = 60;
    // Initialise the B-spline object
    BSpline bspl(k_spine, n_spline, r0, rmax);
    // Value of the 1st (index=0) B-spline at r=0
    std::cout << bspl.b(0, 0.0) << "\n";
    // Value of the 6th (index=5) B-spline at r=1.5 au
    std::cout << bspl.b(5, 1.5) << "\n";
    // Value of the last (index=N-1) B-spline at r=rmax
    std::cout << bspl.b(n_spline - 1, rmax) << "\n";
}
```

