
PHYS4070 Worksheet. Week 2: Matrices
and Eigenvalues
We could store a matrix using old C-style 2D array:

static const int dim = 2; //'static const': must be compile-time constant!
double x[dim][dim] = {0.5, 1.5, 2.5, 3.5};
for(int i=0; i<dim; i++){
 for(int j=0; j<dim; j++){
 std::cout << x[i][j] << ' ';
 }
 std::cout << '\n';
}

But, this requires array size to be known at compile time.
It also has all the pitfalls of old C-style arrays (raw pointers, no range checks etc.)
It's possibly to also use dynamically-sized C-style arrays, but there be dragons.

// Exactly equivalent to:
double y[dim*dim] = {0.5, 1.5, 2.5, 3.5};
for(int i=0; i<dim; i++){
 for(int j=0; j<dim; j++){
 std::cout << y[i*dim + j] << ' ';
 }
 std::cout << '\n';
}

The 2D array is actually stored as a single chunk of memory (i.e. in 1 dimension), and [i][j] is
just short-hand for (i*dim+j)
Can do this using dynamic memory allocation too, but we will not; in c++ there are nicer ways
In modern c++, we would not use a basic c-array, but instead use a class (data structure from a
library). Examples below.

Using regular std::vector, wrap in a class
We can however use an std::vector to store a 2D matrix, we just need to access the elements
using the i*dim+j
Example: consider following matrix:

 (0.5
2.5

1.5
3.5

)

std::vector<double> v{0.5, 1.5, 2.5, 3.5};
int dim = 2; // for a 2x2 matrix
for(int i=0; i<dim; i++){
 for(int j=0; j<dim; j++){
 std::cout << v.at(i*dim + j)<<" ";
 }
 std::cout<<'\n';
}

In order to make things easier, we will make our own class that holds a matrix using std::vector
to store data
In real-world code, many such classes exist already, and we would use one of these matrix
classes (e.g., from the great 'Eigen' library)
But here, we will "re-invent the wheel", since it is a good learning exercise, and will greatly help
you understand classes in c++
Also: what we need for the assignment is very simple, we can code it in just a few lines

Worksheet tasks: part A
I will give you solutions to this part at the end of Wednesday workshop; you may use your or my
solution to continue on with part B for Thursday

1. Write a class to store a 2D square matrix
Use std::vector to hold data
The constructor should take the dimension N as input, and create a vector of correct length
(N*N)
Provide a member function to return .data() from vector, so we can access the c-style array
(needed to interface with lapack)

 double* data() { return v.data(); }

Provide a function that allows us to read and edit the i,j element
To edit, this must return a reference, e.g.,
 double & at(int j, int j) { return v.at(i*dimension + j); }

This allows, e.g., x = matrix.at(i,j); and matrix.at(i,j) = x;
Provide operator overload of '+', that allows us to add two matrices together

This must be a function that takes two matrices, and returns one matrix (function signature)

2. Write a function that takes in a matrix (class you created
above) and find the eigenvalues and eigenvectors

Assume the matrix is real and symmetric, so use LAPACK function DSYEV
Documentation: http://www.netlib.org/lapack/explore-html/index.html
In/out parameters listed below:

int dsyev_(
 char * jobz, // 'V' = compute e. values and vectors. 'N' = values only
 char * uplo, // 'U' = upper triangle of matrix is stored, 'L' = lower
 int * n, // dimension of matrix a
 double * a, // c-style array for matrix a (ptr to array, pointer to a[0])
 // On output, a contains matrix of eigenvectors
 int * lda, // For us, lda=n
 double * w, // array of dimension n - will hold eigenvalues
 double * work,// 'workspace': array of dimension lwork
 int * lwork, // dimension of workspace: ~ 6*n works well
 int * info // error code: 0=worked.
);

This function should return the eigen values and vectors [eigenvectors are stored in a matrix (2D
array)]
Eigenvalues are sorted, and eigenvectors are normalised to 1 (via inner product)
Normally, functions in c++ return only one thing. We have two options:
A: Pass in/out parameters to function by reference like this:

 void solveEigenSystem(Matrix matrix, Matrix &eigenvectors, Vector &eigenvalues);

This is typically frowned upon, since it makes code difficult to read (which value is input,
which is output?)

B: Define a class/struct that holds a matrix of eigenvectors and a vector of eigenvalues, (e.g.,
called MatrixAndVector), and returns this

 MatrixAndVector solveEigenSystem(Matrix matrix);

Note: FORTRAN (language LAPACK is written in) uses column-major ordering to access 2D
arrays, wile c and c++ use row-major.
This means m[i][j] in c++ is m[j][i] in FORTRAN.. so we often need to transpose the matrix
before sending to LAPACK

Our matrix is symmetric, so this doesn't matter, except for 'uplo'
'uplo': 'U' means upper triangle in FORTRAN is stored -- so lower in c++ [we can just fill
entire matrix though]
For other LAPACK functions, you can often just tell them the matrix is a transpose, so we
don't need to waste time transposing it ourselves

Don't forget extern "C" , and to declare the dsyev_ function. and the -llapack linker (compile)
flag (you may also need the -lblas flag)
Example:

http://www.netlib.org/lapack/explore-html/index.html

// std::vector<double> matrix = ...
// Assume this std::vector contains our matrix

char jobz{'V'};
char uplo{'U'};
int dimension = ...; // N if we have NxN matrix
int lwork = 6 * dimension;
std::vector<double> work(lwork);
int info = 0; // will hold potential error message

// create a blank vector to store calculated eigenvalues:
std::vector<double> evals(dimension);

dsyev_(&jobz, &uplo, &dimension, matrix.data(), &dimension, result.vector.data(), work.data(),
// note: on INPUT 'matrix' is the input matrix. After dsyev_ runs, 'matrix' will now contain a

// check for errors
if (info != 0) {
 std::cout << "DSYEV returned error code: " << info << '\n';
}

3. Use your code to calculate eigen values/vectors of simple
2x2 matrix

i,j range from 0 to 1
Expected eigenvalues should be: {1.26759, 0.0657415}
With corresponding eigenvectors: {{1.86852, 1.}, {-0.535184, 1.}}

Note: Normalisation will be different with LAPACK

4. Quantum simple harmonic oscillator (optional)
The Hamiltonian of 1D QSHO, in simplest units case, is

Use finite-difference method to solve Schrodinger eq over x=[-5,5] by casting problem to matrix
eigenvalue problem

Encode derivative operator as a matrix: (... 1, -2, 1, 0, ...) / dx^2, dx = (xmax - xmin)/Nsteps
Form full symmetric Hamiltonian matrix
Use hard boundary condition
Probably need at least a few hundred steps

m =ij

i + j + 1.0
1.0

H = +
2

 p̂2

2
x2

Compare eigenvalues to known energies: En = (n + 1/2)
We also have a full set of orthogonal wavefunctions (eigenvectors). These are not yet properly
normalised: check that the first two wavefunctions (eigenvectors) are indeed orthogonal
Plot First 3 wavefunctions - do the look how you expect?

Worksheet tasks: part B: Hydrogen
In the assignment, you are tasked with Solving Schodinger equation for a many-electron atom; here
we will practise the procedure for the simplest case of hydrogen.

The radial Hamiltonian for Hydrogen atom is:

We will use a new very powerful method to solve the Schrodinger equation, by expanding the
solutions over a basis of B-spline (basis) functions, b. (Use provided code to calculate B-splines)

Solve the Schrodinger equation for Hydrogen by solving the eigenvalue problem using DSYGV:

You can use any integration scheme for these integrals - it will be much easier if you store the values
of the B-splines in an array before trying to do the integrals.

For the general case of

we have

 H = − + ,r 2
−1

∂r2

∂2

r

Z

2r2

l(l + 1)
(1)

P (r) = c b (r),

j

∑
N b

j j (2)

 ⟨i∣ ∣j⟩c

j

∑ Ĥr j

⟹ H r c

= ε ⟨i∣j⟩c

j

∑ j

= εB .c

(3)

(4)

 H = ⟨i∣ ∣j⟩ = b (r) b (r) dr , B = ⟨i∣j⟩ = b (r)b (r) dr,ij Ĥr ∫ i Ĥr j ij ∫ i j (5)

H = − +
2
1

∂r2

∂2

V (r),

(using integration by parts).
Integration by parts has two benefites: simpler and more stable to calculate first-derivatives, and H
becomes manifestly symmetric (it would be symmetric anyway, except for numerical errors).

As described in lectures, discard the first two (index=0 and 1) B-splines, and the last one (index=n-1)
to enforce the boundary conditions.

Use ~30-60 Bsplines of order k=7. You will have to choose good r0 and rmax.

1. Compare energies for s and p states to expected
Note: Biggest source of error likely comes from integration grid, r0, rmax, and num_stepd
Since the H and B matrix sizes depend on number of B-splines used, NOT number of
integration points, we can increase number of points without slowing down code very much!

2. Use expansion coefficients and B-splines to construct wavefunctions; check that they are
properly normalised (they should already be)

3. Plot wavefunctions for 1s, 2s, and 2p
4. Think about simple extension to this needed for assignment.

DSYGV parameters (very similar to DSYEV, can adapt previous
code)

extern "C"
int dsygv_(
 int *ITYPE, // =1 for problems of type Av=eBv
 char *JOBZ, // ='V' means calculate eigenvectors
 char *UPLO, // 'U': upper triangle of matrix is stored, 'L': lower
 int *N, // dimension of matrix A
 double *A, // c-style array for matrix A (ptr to array, pointer to a[0])
 // On output, A contains matrix of eigenvectors
 int *LDA, // For us, LDA=N
 double *B, // c-style array for matrix B [Av=eBv]
 int *LDB, // For us, LDB =N
 double *W, // Array of dimension N - will hold eigenvalues
 double *WORK, // 'workspace': array of dimension LWORK
 int *LWORK, // dimension of workspace: ~ 6*N works well
 int *INFO // error code: 0=worked.
);

H ij = − b (r)b (r) dr + b (r)V (r)b (r) dr
2
1 ∫ i j

′′ ∫ i j

= + b (r)b (r) dr + b (r)V (r)b (r) dr
2
1 ∫ i

′
j
′ ∫ i j

(6)

(7)

Example for using the provided B-spline code

#include "bspline.hpp"
#include <iostream>
int main(){
 double r0 = 1.0e-3;
 double rmax = 50.0;
 int k_spine = 7; // order of B-splines
 int n_spline = 60;

 // Initialise the B-spline object
 BSpline bspl(k_spine, n_spline, r0, rmax);

 // Value of the 1st (index=0) B-spline at r=0
 std::cout << bspl.b(0, 0.0) << "\n";
 // Value of the 6th (index=5) B-spline at r=1.5 au
 std::cout << bspl.b(5, 1.5) << "\n";
 // Value of the last (index=N-1) B-spline at r=rmax
 std::cout << bspl.b(n_spline - 1, rmax) << "\n";
}

