Functions, templates, functionals, and lambdas
in C++

While this is specific to c++, some general ideas hold for many languages (except templates)

1. Recap: function arguments; pass by value (copy),
reference, pointer

Pass by value (aka pass by copy):

¢ Gets a new copy of variable
o Changes to this variable inside function do not affect original variable

double sum_by value(double x, double y) {
X +=Y;

return Xx;

}

Pass by reference:

o Gets a reference to existing variable
« Changes to this variable inside function do affect original variable

double sum_by reference(double &x, double &y) {

X +=Y;
return Xx;

}

Pass by const reference:

o Gets a reference to existing variable (so, no copy)
¢ Changes to this variable inside function are not allowed

double sum_by constref(const double &x, const double &y) {

return x + y;

}

Why?

o When passing around simple data (e.g., an int, double ) usually doesn't matter
o If instead we are passing large data structures (e.g., an entire matrix), we don't want to unnecessarily copy all
this data (this is slow)
o Sometimes we do want to copy the data, but this allows us to control when that happens
o Beware passing by reference -- errors caused by accidentally modifying input can be hard to debug.



o Usually, we pass by reference to avoid copying the data. We normally don't want to modify the input data
inside the function. We can enfore this by passing by const reference
o Best practise rule: prefer pass by const reference for large objects, value for small
¢ You can also pass by pointer, const pointer, etc. etc.

Example:
Interactive version: https://godbolt.org/z/xcWsjbnWs

#include <iostream>
// ... include 3 above functions ...
int main() {

double x = 2.0;

double y = 3.5;

std::cout << "x=" << x << ", y=" <<y << "\n";

double resultl = sum_by value(x, y);

std::cout << "x=" << x << ", y=" <<y << ", result=" << resultl << "\n";
double result2 = sum_by reference(x, y);
std::cout << "x=" << x << ", y=" <<y << ", result=" << result2 << "\n";

double result3 = sum_by constref(x, y);

std::cout << "x=" << x << ", y=" <<y << ", result=" << result3 << "\n";
¥
Output:
x=2, y=3.5

x=2, y=3.5, result=5.5
x=5.5, y=3.5, result=5.5
x=5.5, y=3.5, result=9

Optional/Default arguments

+ We can specify optional function arguments
o They must be at the end of the input list
o We must give them a default value in the function signature (declaration)

// declare function:
double func(double x, double y, double z = 2.5);
// z is optional - if not given, will assume value is 2.5

// Then, on calling the function:

func(3.1, 2.7); // call with default argument
func(3.1, 2.7, 2.5); // exactly same as above
func(3.1, 2.7, 9.5); // call with different argument

Recursive functions

* We can write functions which call themselves
o Often very useful; but be careful not get stuck in an infinite loop - must have an exit condition
o Consider this simple example that calculates x”n:


https://godbolt.org/z/xcWsjbnWs

double my pow(double x, int n) {
if (n == 0) {
return 1.0;
} else if (n < 0) {
return 1.0 / my_pow(x, -n);
} else {
return x * my_pow(x, n - 1);
}
}

2. Function overloading, and templates

Say we want a function that will work with more than one type, for example:

double sum(double a, double b) { return a + b; }
int sum(int a, int b) { return a + b; }

o C++ allows function overloading -- where the same function name can be used for different arguments (not
allowed in C)

« Which version of the function will be called will depend on the type of input variable (this has potential for
confusion, and hard-to-debug errors)

e This example may appear silly, since int can be converted to double; however, it becomes important for more
complex types that cannot be so easily converted between (e.g., an array of int cannot be simply converted
to an array of double ) - we may also want to avoid conversions for performance/correctness reasons

o This gets tedious quickly - there are an infinite number of types (since types can be user defined)

« To be more generic, we may use templates

template <typename T>
T sum(T a, T b) {
return a + b;

}

o Here, 'T' is the name of a generic type - 'T' may be anything (called 'T' by convention, but can be anything; can
be more than one, e.g., <typename T, typename U> efc.)
o Technically, this will generate code for you, at compile time; it will write each function overload for you, based
on which types you actually use in your code
¢ Must be defined either in a header file, or in the same .cpp file you use them
o (They must be visible in each 'translation unit')
o There are fancy ways to restrict which types T is allowed to take -- but we will ignore this complexity for now.
o Look up 'type traits' if you're interested!
e This is just an extremely basic introduction to templates; the template system in c++ is its own entire language,
and is extremely powerful (though sometimes difficult to use)

Example:
Interactive version: https://godbolt.org/z/6974asEax


https://godbolt.org/z/6974asEax

#include <iostream>
#include <string>

// Declare a template: T is generic type, may be any type
template <typename T>
T sum(T a, T b) {

return a + b;

¥

int main() {
int i1 = 1;
int i2 = 2;

int resultl = sum(il, i2); // calls sum(int, int)

double d1 = 1.01;
double d2 2.02;
double result2 = sum(dl, d2); // calls sum(double, double)

// Even works with strings! (this may not be what you want)
// Works with any type for which (a+b) is defined

std::string s1 = "Hello ";
std::string s2 = "world!";

std::string result3 = sum(sl, s2); // calls sum(string, string)

non non

std::cout << resultl << << result2 << << result3 << "\n";

// auto result = sum(il, d1); // This will not compile!

// il is int, dl1 is double. So c++ cannot deduce what T should be

// If you must, you can force it, be explicitely stating the type using "<>:
auto result4 = sum<double>(il, di1);

// This will compile, but will -Wconversion warning,

// since 11 is being converted to a double

3. Functionals: Passing functions to functions

o Sometimes it is extremely useful to have a function that takes another function as one of its arguments
o For example, we may want a function called 'integrate' that takes a function, f(x) , and integrates it between
x = [a,b],e.g.:

// nb: This doesn't work quite yet..., because there is no 'Function' type
double integrate(Function f, double a, double b); //??

Can we do this? Yes! But not quite so simply. There are three key ways to do this: function pointers, templates, and
using c++ library std::function
(The templates case is really the same as function pointers, since T will be deduced as a fn pointer.)

..using function pointers

o Old; we typically try to avoid this, because complicated
o We can pass the memory address of a function



o In c++, a function name converts implicitly to the memory address of a function (function pointer), so we
do not need to use the & operator (though, we can)
¢ For a function:

OutType funcName(InTypel x, InType2 y, ...);
¢ Function pointer has the form:

OutType (*funcName)(InTypel, InType2, ...)
e So, we could write our 'integrate’ function as

double integrate(double (*f)(double), double a, double b);
¢ and call it like:

double result = integrate(f, a, b);
// double result = integrate(&f, a, b); // equivalent to above

..using templates

» Since a template can be any type (including function pointer), this gives a simple way to pass functions to
functions

e This is powerful, however, it is complex; if you get the code wrong, sometimes the error messages will be
extremely hard to decipher

o This is commonly seen in code - probably because it uses the least typing (not a great reason, but hey)

* We could write our 'integrate' function as

template<typename Function>
double integrate(Function f, double a, double b);

And then use it in the exact same way as above

..using std::function

o C++ provides a general class to hold a function (called function objects, or callables)
¢ Requires c++11 or newer; you may need to add -std=c++11 compile option

e need: #include <functional>

o Avoids complexity of using templates and function pointers

¢« When problems happen, usually get nice error messages

e Has type of form

std::function<OutType(InTypel, InType2, ...)>
o Often used with using keyword (like an alias) to save typing

using FuncType = std::function<OutType(InTypel, InType2, ...)>;
// Then, just use 'FuncType' as the type when needed



e e.g., our f(x) = x*2 function would be simply:
std: :function<double(double)>

Example:
Functions that takes a function and integrates it (trapezoid rule) - using the three methods form above.
Interactive version: https://godbolt.org/z/KGnMKbxPc

#include <functional>
#include <iostream>

// Simple function, f(x)=x"2, which we will integrate
double f(double x) { return x * x; }

// Function that integrates another function; uses function pointer
double integrate fp(double (*f)(double), double a, double b) {
int n_pts = 100;
double dx = (b - a) / (n_pts - 1);
double integral = (f(a) + f(b)) * (dx / 2.9);
for (int i = 1; i < n_pts - 1; ++i) {
double x = a + i * dx;
integral += f(x) * dx;
}

return integral;

// ...; uses templates
template <typename Function>
double integrate tmpl(Function f, double a, double b) {

// ... same as above ...
}
// ...; uses std::function

double integrate_std(std::function<double(double)> f, double a, double b) {
// ... same as above ...

}

int main() {
double exact = 2.0 / 3;
double resultl = integrate fp(f, -1.0, 1.9);
double result2 = integrate_tmpl(f, -1.0, 1.0);
double result3 = integrate_std(f, -1.0, 1.9);
std::cout << exact << ", " << resultl << ", " << result2 << ", " << result3 << "\n";

4. Lambdas

Lambdas are "anonymous" inline functions
o (‘anonymous' is a little confusing, since they can have names..)

Requires c++11 or newer; you may need to add -std=c++11 compile option

A nice way to define (usually short) functions inline (inside main() )

They are often passed as input to other functions (like STL standard algorithms)

Have general form: [captures](parameters){function body;}


https://godbolt.org/z/KGnMKbxPc

o We'll see what this means below
o For example, a lambda version of our 'f' function from above, which takes a double x and returns a double x*x,
is

[J(double x){ return x * x; }
o Captures allow us to include local data in a function - usually there are no captures, so the '[]' are empty

double y = 7.5;
[y]l(double x){ return y * x * x; }

+ We may also capture by reference:

double y = 7.5;
[&y](double x){ return y * x * x; }

e You can (though may not want to) capture everything in the local scope (be careful with this), either by value or
by reference:

[=](double x){ ... } // capture all by value
[&](double x){ ... } // capture all by reference

e Combining with our 'integrate' function from above, we could have:
double result = integrate_std([](double x) { return x * x; }, -1.0, 1.90);

* We can give lambdas names, which makes code more readable. But, you must use auto for the type:

auto my_lambda = [](double x) { return x * x; };
double result = integrate_std(my_lambda, -1.0, 1.0);

+ Note Lambdas can 'decay' to function pointers (i.e., you can pass a lambda to a function expecting a function
pointer), but only if the lambda has no captures.

» If you want to pass a lambda that has captures to a function, you must use std::functional, which can take any
lambda

Lambda example

Interactive version: https://godbolt.org/z/j448zZW8GG


https://godbolt.org/z/j448zW8GG

#include <algorithm>
#include <iostream>
#include <vector>

int main() {
auto 11 = []() { return "Hello world\n"; };
auto 12 = []() { std::cout << "Hello world\n"; };

std::cout << 11();
12();

auto 13 = [](double x) { return x * x; };

std::cout << 13(1.0) << " ' << 13(2.0) << " ' << 13(3.0) << '\n';

int a = 1;
auto 1 _value = [a]() { return a; };
std::cout << a << ' ' << 1 value() <<

<< a << '"\n';

auto 1 _reference = [&a]() {
a *= 2;
return a;

s

std::cout << a <<

<< 1 _reference() << << a << '\n';
// Lambdas are very useful for interfacing with std algorithms:
std::vector<int> vec{3, 9, -2, 1, 5, -12, 66, 0, 12, -8};

// use std::sort to sort smallest to largest (default)
std::sort(vec.begin(), vec.end());
for (auto &el : vec) {

std::cout << el << ", ";

}

std::cout << '\n';

// We can define a lamda that instead sorts by absolute value:
auto compare_by abs = [](int a, int b) {
return std::abs(a) < std::abs(b);
¥
std: :sort(vec.begin(), vec.end(), compare_by_abs);
for (auto &el : vec) {
std::cout << el << ", ";

}

std::cout << '\n';

// Another commone use-case, is for_each method:
std::for_each(vec.begin(), vec.end(),

[J¢int i) { std::cout << i << ", "; });
std::cout << '\n';

// with c++-17, we can use 'auto' as lambda parameter type
// (equivilant to using templates)
// This will need -std=c++17 command-line option to work
std::for_each(vec.begin(), vec.end(),

[J(auto i) { std::cout << i << ", "; });
std::cout << '\n';



