
Functions, templates, functionals, and lambdas
in C++
While this is specific to c++, some general ideas hold for many languages (except templates)

1. Recap: function arguments; pass by value (copy),
reference, pointer
Pass by value (aka pass by copy):

Gets a new copy of variable
Changes to this variable inside function do not affect original variable

double sum_by_value(double x, double y) {
 // Gets own copy of x and y
 x += y;
 return x;
}

Pass by reference:

Gets a reference to existing variable
Changes to this variable inside function do affect original variable

double sum_by_reference(double &x, double &y) {
 // Get *reference* to x and y - operate on existing variable!
 x += y;
 return x;
}

Pass by const reference:

Gets a reference to existing variable (so, no copy)
Changes to this variable inside function are not allowed

double sum_by_constref(const double &x, const double &y) {
 // x += y; // would not compile, cannot modify 'const' variable
 return x + y;
}

Why?

When passing around simple data (e.g., an int , double) usually doesn't matter
If instead we are passing large data structures (e.g., an entire matrix), we don't want to unnecessarily copy all
this data (this is slow)

Sometimes we do want to copy the data, but this allows us to control when that happens
Beware passing by reference -- errors caused by accidentally modifying input can be hard to debug.

Usually, we pass by reference to avoid copying the data. We normally don't want to modify the input data
inside the function. We can enfore this by passing by const reference

Best practise rule: prefer pass by const reference for large objects, value for small
You can also pass by pointer, const pointer, etc. etc.

Example:
Interactive version: https://godbolt.org/z/xcWsjbnWs

#include <iostream>
// ... include 3 above functions ...
int main() {
 double x = 2.0;
 double y = 3.5;

 std::cout << "x=" << x << ", y=" << y << "\n";

 double result1 = sum_by_value(x, y);
 std::cout << "x=" << x << ", y=" << y << ", result=" << result1 << "\n";

 double result2 = sum_by_reference(x, y);
 std::cout << "x=" << x << ", y=" << y << ", result=" << result2 << "\n";

 double result3 = sum_by_constref(x, y);
 std::cout << "x=" << x << ", y=" << y << ", result=" << result3 << "\n";
}

Output:

x=2, y=3.5

x=2, y=3.5, result=5.5

x=5.5, y=3.5, result=5.5

x=5.5, y=3.5, result=9

Optional/Default arguments
We can specify optional function arguments
They must be at the end of the input list
We must give them a default value in the function signature (declaration)

// declare function:
double func(double x, double y, double z = 2.5);
// z is optional - if not given, will assume value is 2.5

// Then, on calling the function:
func(3.1, 2.7); // call with default argument
func(3.1, 2.7, 2.5); // exactly same as above
func(3.1, 2.7, 9.5); // call with different argument

Recursive functions
We can write functions which call themselves
Often very useful; but be careful not get stuck in an infinite loop - must have an exit condition
Consider this simple example that calculates x^n:

https://godbolt.org/z/xcWsjbnWs

double my_pow(double x, int n) {
 if (n == 0) {
 return 1.0;
 } else if (n < 0) {
 return 1.0 / my_pow(x, -n);
 } else {
 return x * my_pow(x, n - 1);
 }
}

2. Function overloading, and templates
Say we want a function that will work with more than one type, for example:

double sum(double a, double b) { return a + b; }
int sum(int a, int b) { return a + b; }

C++ allows function overloading -- where the same function name can be used for different arguments (not
allowed in C)
Which version of the function will be called will depend on the type of input variable (this has potential for
confusion, and hard-to-debug errors)
This example may appear silly, since int can be converted to double; however, it becomes important for more
complex types that cannot be so easily converted between (e.g., an array of int cannot be simply converted
to an array of double) - we may also want to avoid conversions for performance/correctness reasons
This gets tedious quickly - there are an infinite number of types (since types can be user defined)
To be more generic, we may use templates

template <typename T>
T sum(T a, T b) {
 return a + b;
}

Here, 'T' is the name of a generic type - 'T' may be anything (called 'T' by convention, but can be anything; can
be more than one, e.g., <typename T, typename U> etc.)
Technically, this will generate code for you, at compile time; it will write each function overload for you, based
on which types you actually use in your code
Must be defined either in a header file, or in the same .cpp file you use them

(They must be visible in each 'translation unit')
There are fancy ways to restrict which types T is allowed to take -- but we will ignore this complexity for now.

Look up 'type traits' if you're interested!
This is just an extremely basic introduction to templates; the template system in c++ is its own entire language,
and is extremely powerful (though sometimes difficult to use)

Example:
Interactive version: https://godbolt.org/z/6974asEax

https://godbolt.org/z/6974asEax

#include <iostream>
#include <string>

// Declare a template: T is generic type, may be any type
template <typename T>
T sum(T a, T b) {
 return a + b;
}

int main() {
 int i1 = 1;
 int i2 = 2;
 int result1 = sum(i1, i2); // calls sum(int, int)

 double d1 = 1.01;
 double d2 = 2.02;
 double result2 = sum(d1, d2); // calls sum(double, double)

 // Even works with strings! (this may not be what you want)
 // Works with any type for which (a+b) is defined
 std::string s1 = "Hello ";
 std::string s2 = "world!";
 std::string result3 = sum(s1, s2); // calls sum(string, string)

 std::cout << result1 << " " << result2 << " " << result3 << "\n";

 // auto result = sum(i1, d1); // This will not compile!
 // i1 is int, d1 is double. So c++ cannot deduce what T should be
 // If you must, you can force it, be explicitely stating the type using `<>`:
 auto result4 = sum<double>(i1, d1);
 // This will compile, but will -Wconversion warning,
 // since i1 is being converted to a double
}

3. Functionals: Passing functions to functions
Sometimes it is extremely useful to have a function that takes another function as one of its arguments
For example, we may want a function called 'integrate' that takes a function, f(x) , and integrates it between
 x = [a,b] , e.g.:

// nb: This doesn't work quite yet..., because there is no 'Function' type
double integrate(Function f, double a, double b); //??

Can we do this? Yes! But not quite so simply. There are three key ways to do this: function pointers, templates, and
using c++ library std::function
(The templates case is really the same as function pointers, since T will be deduced as a fn pointer.)

..using function pointers
Old; we typically try to avoid this, because complicated
We can pass the memory address of a function

In c++, a function name converts implicitly to the memory address of a function (function pointer), so we
do not need to use the & operator (though, we can)

For a function:

 OutType funcName(InType1 x, InType2 y, ...);

Function pointer has the form:

 OutType (*funcName)(InType1, InType2, ...)

So, we could write our 'integrate' function as

 double integrate(double (*f)(double), double a, double b);

and call it like:

 double result = integrate(f, a, b);
 // double result = integrate(&f, a, b); // equivalent to above

..using templates
Since a template can be any type (including function pointer), this gives a simple way to pass functions to
functions
This is powerful, however, it is complex; if you get the code wrong, sometimes the error messages will be
extremely hard to decipher
This is commonly seen in code - probably because it uses the least typing (not a great reason, but hey)
We could write our 'integrate' function as

template<typename Function>
double integrate(Function f, double a, double b);

And then use it in the exact same way as above

..using std::function
C++ provides a general class to hold a function (called function objects, or callables)
Requires c++11 or newer; you may need to add -std=c++11 compile option
need: #include <functional>
Avoids complexity of using templates and function pointers
When problems happen, usually get nice error messages
Has type of form

std::function<OutType(InType1, InType2, ...)>

Often used with using keyword (like an alias) to save typing

using FuncType = std::function<OutType(InType1, InType2, ...)>;
// Then, just use 'FuncType' as the type when needed

e.g., our f(x) = x^2 function would be simply:

std::function<double(double)>

Example:
Functions that takes a function and integrates it (trapezoid rule) - using the three methods form above.
Interactive version: https://godbolt.org/z/KGnMKbxPc

#include <functional>
#include <iostream>

// Simple function, f(x)=x^2, which we will integrate
double f(double x) { return x * x; }

// Function that integrates another function; uses function pointer
double integrate_fp(double (*f)(double), double a, double b) {
 int n_pts = 100;
 double dx = (b - a) / (n_pts - 1);
 double integral = (f(a) + f(b)) * (dx / 2.0);
 for (int i = 1; i < n_pts - 1; ++i) {
 double x = a + i * dx;
 integral += f(x) * dx;
 }
 return integral;
}

// ...; uses templates
template <typename Function>
double integrate_tmpl(Function f, double a, double b) {
// ... same as above ...
}

// ...; uses std::function
double integrate_std(std::function<double(double)> f, double a, double b) {
// ... same as above ...
}

int main() {
 double exact = 2.0 / 3;
 double result1 = integrate_fp(f, -1.0, 1.0);
 double result2 = integrate_tmpl(f, -1.0, 1.0);
 double result3 = integrate_std(f, -1.0, 1.0);
 std::cout << exact << ", " << result1 << ", " << result2 << ", " << result3 << "\n";
}

4. Lambdas
Lambdas are "anonymous" inline functions

('anonymous' is a little confusing, since they can have names..)
Requires c++11 or newer; you may need to add -std=c++11 compile option
A nice way to define (usually short) functions inline (inside main())
They are often passed as input to other functions (like STL standard algorithms)
Have general form: [captures](parameters){function body;}

https://godbolt.org/z/KGnMKbxPc

We'll see what this means below
For example, a lambda version of our 'f' function from above, which takes a double x and returns a double x*x,
is

 [](double x){ return x * x; }

Captures allow us to include local data in a function - usually there are no captures, so the '[]' are empty

 double y = 7.5;
 [y](double x){ return y * x * x; }

We may also capture by reference:

 double y = 7.5;
 [&y](double x){ return y * x * x; }

You can (though may not want to) capture everything in the local scope (be careful with this), either by value or
by reference:

 [=](double x){ ... } // capture all by value
 [&](double x){ ... } // capture all by reference

Combining with our 'integrate' function from above, we could have:

 double result = integrate_std([](double x) { return x * x; }, -1.0, 1.0);

We can give lambdas names, which makes code more readable. But, you must use auto for the type:

 auto my_lambda = [](double x) { return x * x; };
 double result = integrate_std(my_lambda, -1.0, 1.0);

Note Lambdas can 'decay' to function pointers (i.e., you can pass a lambda to a function expecting a function
pointer), but only if the lambda has no captures.
If you want to pass a lambda that has captures to a function, you must use std::functional, which can take any
lambda

Lambda example

Interactive version: https://godbolt.org/z/j448zW8GG

https://godbolt.org/z/j448zW8GG

#include <algorithm>
#include <iostream>
#include <vector>

int main() {
 auto l1 = []() { return "Hello world\n"; };
 auto l2 = []() { std::cout << "Hello world\n"; };

 std::cout << l1();
 l2();

 auto l3 = [](double x) { return x * x; };
 std::cout << l3(1.0) << ' ' << l3(2.0) << ' ' << l3(3.0) << '\n';

 int a = 1;
 auto l_value = [a]() { return a; };
 std::cout << a << ' ' << l_value() << ' ' << a << '\n';

 auto l_reference = [&a]() {
 a *= 2;
 return a;
 };
 std::cout << a << ' ' << l_reference() << ' ' << a << '\n';

 // Lambdas are very useful for interfacing with std algorithms:
 std::vector<int> vec{3, 9, -2, 1, 5, -12, 66, 0, 12, -8};

 // use std::sort to sort smallest to largest (default)
 std::sort(vec.begin(), vec.end());
 for (auto &el : vec) {
 std::cout << el << ", ";
 }
 std::cout << '\n';

 // We can define a lamda that instead sorts by absolute value:
 auto compare_by_abs = [](int a, int b) {
 return std::abs(a) < std::abs(b);
 };
 std::sort(vec.begin(), vec.end(), compare_by_abs);
 for (auto &el : vec) {
 std::cout << el << ", ";
 }
 std::cout << '\n';

 // Another commone use-case, is for_each method:
 std::for_each(vec.begin(), vec.end(),
 [](int i) { std::cout << i << ", "; });
 std::cout << '\n';

 // with c++-17, we can use 'auto' as lambda parameter type
 // (equivilant to using templates)
 // This will need -std=c++17 command-line option to work
 std::for_each(vec.begin(), vec.end(),
 [](auto i) { std::cout << i << ", "; });
 std::cout << '\n';
}

