
Classes in C++
Classes (and structs) are data structures that contain data (member variables), and functions (sometimes called
methods)
Some are provided by c++ libraries; we can also write our own.
This can be an extremely useful tool for encapsulation.

See also the examples at: https://github.com/benroberts999/cpp-cheatsheet

Classes and Structs
We may define classes and structs in the following way:

 class MyClass{};
 struct MyStruct{};

Notice the semi-colon
The only difference between class and struct: members in class are private by default; those of struct are
public by default (we'll see what this means below)
Public mean accessible outside the class; private means not
By convention, structs are used for very small objects (one or two members, no functions), and classes are
used for large ones with functions

Classes are not useful unless that contain something (data/functions).
Consider this example:

 // define a class:
 class MyClass{
 private:
 int a = 1;
 public:
 int b = 2;
 };

 // Construct object of type 'MyClass', call it mc:
 MyClass mc;

 // Access the data members of MyClass
 std::cout << mc.b << '\n';
 // std::cout << mc.a << '\n'; - does not work, "a is private in this scope"

 mc.b = 42;
 std::cout << mc.b << '\n';

Constructor, member initializer list
Constructor is a function that is called automatically when you make a new variable of this type

https://github.com/benroberts999/cpp-cheatsheet

member initializer list initialises member variables
funny syntax: a colon ':' after (), but before {}

 class MyClass{
 public:

 // data stored in the class
 int a;

 // Constructor, using member initializer list:
 MyClass(int in_a) : a(in_a) {}

 // We could also write it as:
 // MyClass(int in_a){
 // a = in_a;
 // }
 // However, in this case, the int a in constructed, then set to in_a
 // With the member initializer list, these happen at the same time
 };

Member functions
Member functions work just like other functions, but have access to class data
called using the '.': object.function()

Basic example: https://godbolt.org/z/xWYddacjW

class MyClass {
 private:
 int b = 7;
 public:
 int a;
 MyClass(int in_a) : a(in_a) {}

 // Member function:
 double square_a() { return a * a; }
 // Can use member functions to interface with private variables
 void print_b() { std::cout << b << '\n'; }
};

// Use it:
MyClass mc{4};
std::cout << mc.a << '\n';
// std::cout << mc.b << '\n'; //won't compile: b is private
std::cout << mc.square_a() << '\n';
mc.print_b();

Operator overloading
In c++, we may define operators that act on our own user-defined classes
We may overload: +,-,/,*,==,>,<, <<, >> etc. etc.
This is very useful: and leads to nice-looking code. e.g.,

Matrix3 = Matrix1 + Matrix2

https://godbolt.org/z/xWYddacjW

instead of: Matrix3 = matrix_addition(Matrix1,Matrix2);

Super basic example: https://godbolt.org/z/MnEM8s3sq

class MyComplex {
 public:
 double re, im;
 MyComplex(double in_r, double in_i) : re(in_r), im(in_i) {}
};

MyComplex operator*(MyComplex lhs, MyComplex rhs) {
 double res_re = lhs.re * rhs.re - lhs.im * rhs.im;
 double res_im = lhs.re * rhs.im + lhs.im * rhs.re;
 MyComplex result{res_re, res_im};
 return result;
}

 MyComplex mc1{4.0, 3.0};
 MyComplex mc2{6.0, -1.0};
 MyComplex mc3 = mc1 * mc2;
 std::cout << mc1.re << " + " << mc1.im << "i\n";
 std::cout << mc2.re << " + " << mc2.im << "i\n";
 std::cout << mc3.re << " + " << mc3.im << "i\n";

https://godbolt.org/z/MnEM8s3sq

