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3 Multi-electron atoms and Hartree-Fock model

Important to note: this is not a general overview to atomic physics. There are many extremely im-
portant topics I am not discussing at all, e.g., spin-orbit effect, theory of angular momentum addition
and coupling etc., which are crucial for understanding quantum mechanics of atoms. However, those
are essentially regular quantum mechanics, which you have seen in other courses, and do not require
a computer. Here, I focus on the aspects of many-body atomic physics for which computational cal-
culations are essential. Some excellent sources to pursue these other topics in more detail are books
by Sakurai1, Johnson2, Sobelman3, and Bethe and Salpeter4, which are available in the library.

3.1 Many-particle quantum mechanics

3.1.1 Exchange symmetry, product states

This is only a quick review; see Chapter 7 of Sakurai5 for a more complete discussion (or any other
QM textbook).

Consider system of two non-interacting identical particles (they do not interact with each other,
but may each interact with external potential, V ). The total Hamiltonian is the sum of those for
each particle (same as in classical mechanics):

H =
∑
i

hi =
∑
i

(
p2i
2m

+ V (ri)

)
. (1)

If ψa(r) is a solution to hψa = εaψa (similarly for ψb), then it is clear that

Ψab(r1, r2) = ψa(r1)ψb(r2) (2)

is a solution to H, with eigenvalue (εa+εb). So is the “interchanged” solution ψb(r1)ψa(r2) (swapped
quantum numbers). In fact, since the two particles are identical, such two solutions are completely
indistinguishable. Since the solution must of course return to its original state after two interchanges
of particles a and b, a sensible general solution can be written,

Ψab(r1, r2) =
1√
2
[ψa(r1)ψb(r2)± ψb(r1)ψa(r2)] . (3)

Without going into the details, it turns out that for Fermions (1/2-integer spin particles, such as
electrons), the total wavefunction must be anti-symmetric under the exchange of any two particles:

Ψab(r1, r2)
Fermion =

1√
2
[ψa(r1)ψb(r2)− ψb(r1)ψa(r2)] , (4)

1J. J. Sakurai, Modern Quantum Mechanics (2011) [in particular Chapters 3, 5, 7]
2W. R. Johnson, Atomic Structure Theory (2007)
3I. I. Sobelman, Atomic Spectra and Radiative Transitions (1992)
4H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (1977)
5J. J. Sakurai, Modern Quantum Mechanics (2011)
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while for Bosons (integer spin particles) the total wavefunction must be symmetric under the exchange

Ψab(r1, r2)
Boson =

1√
2
[ψa(r1)ψb(r2) + ψb(r1)ψa(r2)] . (5)

This is to ensure Fermions obey the Fermi-Dirac statistics, and Bosons obey the Bose-Einstein statis-
tics. Note that the anti-symmetry of Fermion wavefunctions encodes the Pauli exclusion principle
(spin-statistics theorem).

The same general form applies for systems of many particles. So long as the system is non-
interacting, the total wavefunction for fermions/boson can be built of anti-symmetric/symmetric
combinations of single-particle wavefunctions.

3.1.2 Slater determinant

For many-Fermion systems (assuming them to be non-interacting), we can form wavefunctions as
above, but we must ensure those wavefunctions are properly anti-symmetric under exchange. A nice
notational trick to do this is to write the wavefunctions as determinant, called Slater determinants,
of the form:

Ψab...n(r1, r2, ..., rN) =
1√
N !

∣∣∣∣∣∣∣∣
ψa(r1) ψa(r2) . . . ψa(rN )
ψb(r1) ψb(r2) . . . ψb(rN )

...
...

. . .
...

ψn(r1) ψn(r2) . . . ψn(rN )

∣∣∣∣∣∣∣∣, (6)

which is an eigenstate of the total Hamiltonian H =
∑N

i h(ri). It’s simple to see this is equivalent
to the two-Fermion case [Eq. (4)]; you should play around with this until you convince yourself it
works for the many-Fermion case too. To avoid notation confusion, note that each ri is a different
coordinate variable (not a specific point on the coordinate grid).

Note that, due to the properties of the determinant, interchanging any two columns (corre-
sponding to swapping a pair of quantum numbers) results in a factor of −1, encoding the Fermion
anti-symmetry. Also, if any two column are identical, the determinant vanishes, encoding the Pauli
exclusion principal.

3.1.3 Matrix elements of multi-Fermion wavefunctions

In practical problems, we often need to evaluate matrix elements of many-particle operators between
Slater-determinant wavefunctions.

Let F and G be general one- and two-particle operators

F̂ =
∑
i

f̂(ri) , Ĝ =
1

2

∑
i,j

ĝ(ri, rj) =
∑
i<j

ĝ(ri, rj), (7)

where f(ri) acts on the ith particle; g(ri, rj) acts on the pair of particles {i, j}. The sum extends
over each of the N electrons i (or each pair of electrons i, j; the i < j ensures pairs are not double-
counted). In regular quantum electrodynamics, this is all that is needed; there are no three-body
operators. An example of a one-body operator would be the interaction between an electron and
an external field, while an example of a two-body operator is the Coulomb interaction between two
electrons.

It is fairly straight-forward, though a little cumbersome, to derive the formulas for calculating
matrix elements between many-body Slater-determinant wavefunctions. If you do, you will start to
see patterns, which will turn into general rules. I will not prove the rules here, but just state them;
they are easy to verify for two-particle wavefunctions.
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Figure 1: Diagrams representing interaction of single-particle operator with Fermion (left), the direct part
of a two-body operator (middle), and exchange (right). Dashed line represents source of interaction.

For diagonal matrix elements (expectation values; initial state = final state):

⟨Ψ|F |Ψ⟩ =
∑
i

⟨i|f |i⟩

⟨Ψ|G|Ψ⟩ =
∑
i<j

(⟨ij|g|ij⟩ − ⟨ji|g|ij⟩) .
(8)

Diagrams representing these are shown in Fig. 1. Here, the Dirac notation refers to the single-particle
wavefunctions: |a⟩ = ψa, |ab⟩ = ψa(r1)ψb(r2), meaning

⟨a|ĥ|b⟩ =
∫
ψ†
a ĥ ψb dV

⟨ab|ĥ|cd⟩ =
∫∫

ψ†
a(r1)ψ

†
b(r2) ĥ ψc(r1)ψd(r2) dV1dV2.

(9)

For non-diagonal matrix elements (transitions), the rules are similar. Using a short-hand nota-
tion6, we have for matrix elements between wavefunctions that differ by a single state:

⟨Ψn
i |F |Ψ⟩ = ⟨n|f |i⟩

⟨Ψn
i |G|Ψ⟩ =

∑
j

(⟨nj|g|ij⟩ − ⟨jn|g|ij⟩) , (10)

and for matrix elements between wavefunctions that differ by two states:

⟨Ψnm
ij |F |Ψ⟩ = 0

⟨Ψnm
ij |G|Ψ⟩ = ⟨nm|g|ij⟩ − ⟨mn|g|ij⟩.

(11)

3.2 Multi-electron atoms

3.2.1 Mean-field (independent particle) model

We can use the above mechanisms to study the quantum mechanics of many-electron atoms. The
total atomic Hamiltonian (in atomic units) is:

H =
N∑
i

(
p2
i

2
− Z

|ri|

)
+
∑
i<j

1

|ri − rj|
. (12)

The last term is the electron-electron repulsion term, which includes a sum over every pair of electrons
(the i < j ensures pairs are not double-counted).

6Here, I use a short-hand notation |Ψn
a⟩ = a†naa|Ψ⟩, (a† and a are creation and annihilation operators) meaning

that one particle in state a is replaced by one in state n. e.g., if Ψ is a 3-particle wavefunction with particles in states
a, b, c, then Ψn

a has particles in states n, b, c. By “state” I mean a given full set of quantum numbers (e.g., n, l, m).
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• Clearly, this is not a non-interacting system. So how can we use the above formalism?

First, re-write the Hamiltonian as

H =
N∑
i

(
p2
i

2
− Z

|ri|
+ uMF(ri)

)
+ δV, (13)

where

δV =
∑
i<j

1

|ri − rj|
−
∑
i

uMF(ri). (14)

Here, uMF is an (as-of-yet undetermined) potential, which is taken to be roughly the average electron-
electron interaction term – called the mean field. If it is chosen widely, then δV should be small,
and can therefore be treated perturbatively. The physical justification for this approximation is
clear – for a system of large number of interacting particles, the individual interactions between all
pairs of particles will average out, and the average interaction potential seen by each particle will be
essentially the same.

We therefore first solve the mean field Hamiltonian with H ≈ HMF

HMF =
N∑
i

(
p2
i

2
− Z

|ri|
+ uMF(ri)

)
, (15)

which now can be treated as a non-interacting system. Then, we can deal with the remaining δV
term later, using perturbation theory: H = HMF + δV . This is called the mean-field approximation,
or the independent particle picture.

This means we form total (approximate) many-electron wavefunction, Ψ, which satisfies

HMFΨ = EΨ, (16)

from Slater determinants made from single-electron solutions to the single-particle equation:

hψ = εψ, (17)

h =
p2

2
− Z

|r|
+ uMF. (18)

In practical calculations, we just calculate and store the set of single-particle solutions, ψ, and use the
rules from Sec. 3.1.3 to perform many-body calculations. Importantly, as can be deduced from these
rules, the single-particle energies ε, correspond to the binding energies (negative of the ionisation
energies) for the individual electrons in the atom.

3.2.2 Initial choice for mean-field

There are many ways to choose a good starting approximation for uMF; here we will discuss a very
simple approach. The atomic potential seen by an electron at very small r is essentially unscreened
by other electrons. So, in this region, we have V (r) ≈ −Z/r. Similarly, at very large r there is total
screening by the (Z − 1) other electrons, so V (r) ≈ −1/r; see Fig. 2. As a very rough first guess for
the mean-field potential, we can chose a smooth potential that connects these two regions. A simple
choice is to use a parametric potential; one that works reasonably well is the Green potential

VGr(r) =
(Z − 1)

r

h
(
er/d − 1

)
1 + h (er/d − 1)

, (19)
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Figure 2: Total atomic potential seen by electron at very small r is essentially unscreened by other electrons,
V (r) ≈ −Z/r, while at very large r there is total screening by the (Z − 1) other electrons, V (r) ≈ −1/r.

where h and d are parameters, which may be tuned to give reasonable results. Note that Vnuc(r) +
VGr(r) behaves like −Z/r for small r, and −1/r for large r.

Before modern computers this was essentially the best one could do. Now, we can do much
better. However, we will use this Green’s potential as a starting point, and improve upon it using
perturbation theory and the Hartree-Fock routine.

3.3 Many-body perturbation theory (first-order)

3.3.1 Single-valence systems

We will firstly focus on atoms that have a single valence electron above closed-shell core; these are the
simplest of the many-electron atoms. All the electrons, besides one, are in “full” shells (each l and
m occupied for each n) – this is called the core. The single valence electron lies in an n shell above
the core. Due to the energy scaling ∼ 1/n2, the energy required to excite a electron from the core
is much much larger than that required to excite the valence electron. Therefore, for single-valence
systems, the “core” configuration typically remains always the same, while all atomic dynamics are
due to the single valence electron. Also, since the valence electron wavefunction is mostly located at
larger radius, the single-particle core wavefunctions depends only very little on the influence of the
valence electron. From the rules presented in Sec. 3.1.3, all these greatly simplify the calculations.

The single-particle energy of the valence electron can be identified as (approximately) the binding
energy of this electron. Therefore, differences in the single-particle energies of different valence states
correspond to the transition energies between atoms in those valence states; see Sec. 3.2.1.

3.3.2 First-order perturbation correction to energies

From before, the perturbation to the total Hamiltonian we must consider is:

δV =
∑
i<j

1

|ri − rj|
−
∑
i

uMF(ri), (20)

≡ Vee − U. (21)

(second line just defines notation Vee and U , which include the summations). Just as in regular
quantum mechanics, the first-order correction to the total atomic energy is thus

δE = ⟨Ψ|Vee|Ψ⟩ − ⟨Ψ|U |Ψ⟩. (22)

5
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To evaluate each of these terms, we must use the rules from Sec. 3.1.3.
The U part is simple, since these are single-particle operators (depend on single electron coordi-

nate only). Using Eq. (8):

⟨Ψ|U |Ψ⟩ =
∑
i

⟨i|uMF|i⟩, (23)

where the sum runs over atomic electrons. Note the sum extends over all electrons, and therefore
includes summation over all n, l, m and spin quantum numbers. For single-valence atoms, we can
break this into the core and valence parts:

⟨Ψ|U |Ψ⟩ =
core∑
c

⟨c|uMF|c⟩+ ⟨v|uMF|v⟩, (24)

where v denotes the state of the valence electron. Notice that the first part, the sum over the core
electrons, is the same for any valence state (it is just the correction to core energy). Since all we can
observe in experiments is the energy for transitions, and for single-valence atoms the core essentially
remains the same, we can drop this part (it will cancel in transitions) – i.e., it does not contribute to
transition energies between valence states, or therefore to the binding/ionisation energy of valence
electron.

The Vee part is more complicated, since these are two-particle operators. From Sec. 3.1.3, we
arrive at

⟨Ψ|Vee|Ψ⟩ =
∑
i<j

[
⟨ij|r−1

12 |ij⟩ − ⟨ij|r−1
12 |ji⟩

]
(25)

where

r−1
12 ≡ 1

|r1 − r2|
.

The first term is known as the direct contribution, and the second is called exchange. Again, we may
separate this into terms involving only core states, and those with core and valence states:

⟨Ψ|Vee|Ψ⟩ =
core∑
a<c

[
⟨ca|r−1

12 |ca⟩ − ⟨ca|r−1
12 |ac⟩

]
+

core∑
c

[
⟨cv|r−1

12 |cv⟩ − ⟨cv|r−1
12 |vc⟩

]
. (26)

Again, the core part is the same for all valence states, and will thus cancel in transition and ionisation
energies for valence states.

Therefore, the first-order perturbation theory correction to the binding energy for valence state
v is

δεv =
core∑
c

[
⟨cv|r−1

12 |cv⟩ − ⟨cv|r−1
12 |vc⟩

]
− ⟨v|uMF|v⟩. (27)

3.3.3 Evaluation of Coulomb integrals

Perturbation theory requires us to evaluate integrals of the form ⟨ab|r−1
12 |cd⟩, which correspond to the

Coulomb interaction between electrons. As a reminder, writing the integral explicitly, this means:

⟨ab|r−1
12 |cd⟩ =

∫∫
ψ†
a(r1)ψ

†
b(r2)

1

|r1 − r2|
ψc(r1)ψd(r2) d

3r1d
3r2. (28)

To evaluate this integral, we use the Laplace expansion7, which you have likely come across before
in your electrodynamics course:

1

|r1 − r2|
=

∞∑
k=0

rk<
rk+1
>

Pk(cos γ), (29)

7J. D. Jackson, Classical Electrodynamics (2001)
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where P is a Legendre polynomial, r< ≡ min(|r1|, |r2|), r> ≡ max(|r1|, |r2|), and γ is the angle
between r1 and r2, and k is known as the multipolarity. For the spherically symmetric problems
of atomic physics, it becomes much easier to re-write this in terms of the spherical harmonics (just
using their definition):

1

|r1 − r2|
=

∞∑
k=0

4π

2k + 1

rk<
rk+1
>

q∑
q=−k

(−1)q Yk,−q(θ1, ϕ1)Yk,q(θ2, ϕ2), (30)

thus separating the radial and angular parts in a way that makes calculating integrals with wave-
functions in the form:

ψnlm(r) =
Pnl(r)

r
Ylm(θ, ϕ), (31)

simple (remember back to previous lecture).
We get expressions in the form:

⟨ab|r−1
12 |cd⟩ =

∑
kq

Akq
abcdR

k
abcd, (32)

where Akq
abcd is the angular integral, and Rk

abcd is the radial integral:

Akq
abcd ≡ 4π

2k + 1
(−1)q

∫∫
Y †
lama

(n̂1)Y
†
lbmb

(n̂2)Yk,−q(n̂1)Yk,q(n̂2)Ylcmc(n̂1)Yldmd
(n̂2) dΩ1dΩ2, (33)

Rk
abcd ≡

∫∫
Pa(r1)Pb(r2)

rk<
rk+1
>

Pc(r1)Pd(r2) dr1dr2. (34)

It is convenient to write Rk
abcd as

Rk
abcd =

∫ ∞

0

Pa(r) y
k
bd(r)Pc(r) dr, (35)

where ykbd is called a “Hartree screening function”

ykbd(r) ≡
∫ ∞

0

Pb(r
′)
rk<
rk+1
>

Pd(r
′) dr′ (36)

=

∫ r

0

Pb(r
′)
(r′)k

rk+1
Pd(r

′) dr′ +

∫ ∞

r

Pb(r
′)

rk

(r′)k+1
Pd(r

′) dr′. (37)

The angular part of the integral boils down to integrals of spherical harmonics; importantly, it
depends only on the angular quantum numbers l and m (and multipolarity k), and not the specific
form of the wavefunction. The angular factor can be calculated geometrically by doing the analytic
integrals over angular coordinates. In reality, it is much easier to do these integrals algebraically,
by making use of the orthogonality properties of the spherical harmonics and the quantum theory
of angular momentum. Simple in concept, such calculations are often very complex, and we will
not deal with them at all here. For more information, see the textbooks by Johnson8, or (for the
particularly brave) Varshalovich9.

8W. R. Johnson, Atomic Structure Theory (2007)
9D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (1988)
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3.4 Hartree-Fock – self-consistent field

3.4.1 Hartree-Fock potential

Motivated by the above, we define a potential, which we will call vHF (Hartree-Fock potential), such
that

⟨a|vHF|a⟩ =
∑
i ̸=a

[
⟨ia|r−1

12 |ia⟩︸ ︷︷ ︸
Direct

−⟨ia|r−1
12 |ai⟩︸ ︷︷ ︸

Exchange

]
. (38)

Note that this is the expectation value of r−1
12 for the state a – i.e., the average value of the electron-

electron repulsion. Therefore, we may use this potential instead of uMF when solving the Schrödinger
equation! I will justify this below, but first, lets work out explicit formulas for vHF.

The direct part is easy; we just don’t integrate over coordinates for ψa;

vdirectHF (r1) =
∑
i ̸=a

∫
|ψi(r2)|2

r12
d3r2. (39)

The exchange part is more complex, and cannot be written as a local potential. Instead, we have:

vexch.HF ψa(r1) = −
∑
i ̸=a

(∫
ψ†
i (r2)ψa(r2)

r12
d3r2

)
ψi(r1). (40)

It is fairly easy to check that these formulas agree with Eq. (38) (vHF = vdirectHF + vexch.HF ). Notice that,
for valence states, the summations simply extend over all core electrons.

After performing the angular integrals, and after summing over magnetic quantum numbers, we
can present the effective direct potential that enters the radial Schrödinger equation.

vdirectPv(r) =
core∑
nclc

2(2lc + 1) y0cc(r)Pv(r), (41)

where the sum extends over just the principle and orbital angular momentum quantum numbers for
the electrons in the core, and y0 is given by Eq. (36). Only the k = 0 term from the Laplace expansion
survives in the direct part. The angular part of the exchange term is a little more complicated, and
requires some theory we have not yet covered. Notice that the (2l + 1) is simply the number of
electrons in that shell (m = −l, ..., l), with the extra factor of 2 accounting for spin.

There is a second way to derive the direct part of the potential, which further justifies its use
as a potential in the Schrödinger equation. Consider the electrostatic potential seen by an electron,
a, due to the other Z − 1 other electrons in an atom. This is due to the electric charge density of
the electron cloud, call it ρ(r). Now, we know that this is just the same as the electron probability
density, times the electron charge:

ρ(r) = e
∑
i ̸=a

|ψi(r)|2.

We can use Gauss’ law to work out what the electrostatic potential due to this charge density is; it
will not be a surprise that we get exactly back the direct part of the potential, Eq. (39).

3.4.2 Exchange potential

As stated above, the exchange potential is more complicated, since it cannot be written as a function
of one coordinate. Instead, we typically define its action on a state. In terms of the radial wavefunc-
tion, P , (i.e., after angular integrations and summation over magnetic quantum numbers and spin),

8
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it can be shown to be:

vexchPa(r) = −
core∑
c

2(2lc + 1)
∑
k

Λk
la,lc y

k
ca(r)Pc(r), (42)

where Λ is the angular coefficient. Note that it is the core state, Pc, appears directly in the right-hand
side. The state a appears inside the yk Coulomb integral. This is due to the “exchange” nature of
the interaction (particles a and c have exchanged).

The full expression for Λ is:

Λk
ab =

1

2

(
la k lb
0 0 0

)2

, (43)

where (:::) is called a 3j-symbol (related to Clebsch-Gordan coefficients). It turns out that Λ is
symmetric under any interchange of a,b,k. If we only consider s (l = 0) and p (l = 1) states, then
the only non-zero Λ coefficients are:

Λ0
00 =

1

2
, Λ1

01 =
1

6
, Λ0

11 =
1

6
, Λ2

11 =
1

15
. (44)

3.4.3 Self-consistent field method

In the previous section we derived the Hartree-Fock potential, which we hope to use in place of the
mean-field potential uMF when solving the Schrödinger equation to determine the wavefunctions.
However, the Hartree-Fock potential itself depends on the wavefunctions! Therefore, we must start
with an initial “guess” for the wavefunctions, and iteratively improve our approximation.

• Use initial approximation for uMF (e.g., Green potential), solve Schrödinger equation to generate
set of single-electron wavefunctions

• Use these wavefunctions to form vHF, which is a better potential than the initial approximation

• Use this better potential to generate a set of better wavefunctions

• Now that we have a better set of wavefunctions, can form a better-yet potential, and so-on

• We continue this procedure iteratively, until the solutions converge.

The physical justification for this procedure is simple; the inter-electronic potential depends on
the distribution of atomic electrons. By continuously improving the model for the electron wavefunc-
tions, we will improve our model for the inter-electronic potential, which will improve our resulting
wavefunctions and so on.

That this method is an accurate approximation can be proven by considering the first-order
perturbation theory correction to the energy, when vHF was used as the potential in the Schrödinger
equation. In fact, due to the very definition of the Hartree-Fock potential, it is a simple matter to
see that this is exactly zero! Therefore, there are no first-order corrections to energies (or, indeed,
to the wavefunctions) when the Hartree-Fock potential is used. In order to improve the accuracy
further, we must consider higher-order perturbation theory corrections, which become much more
complicated, and is an active area of current research (honours/PhD projects available!).
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