
PHYS4070. Atomic Physics 1: Hydrogenlike ions – February 2023 B. M. Roberts

1 Atomic physics – hydrogen-like ions 1
1.1 Hydrogenlike ions: quick review . 1
1.2 Numerical solution to radial equation . 4
1.3 lapack/dsyev example: solve DE as matrix eigenvalue problem . 8
1.4 Basis of single-electron wavefunctions (“orbitals”) . 9

1 Atomic physics – hydrogen-like ions

• Here: focus on solving Schrodinger equation for single-electron wavefunction (e.g., hydrogen)

• Useful, even for more complex atoms, since we use single-electron wavefunctions to build multi-
electron wavefunctions

Important to note: this is not a general overview to atomic physics. There are many extremely
important topics I am not discussing at all, e.g., spin-orbit effect, theory of angular momentum addi-
tion and coupling etc., which are crucial for understanding quantum mechanics of atoms. However,
those are essentially regular quantum mechanics, which you have seen in other courses, and do not
require a computer. Here, I focus on the aspects of many-body atomic physics for which computa-
tional calculations are essential. Some excellent sources to pursue these other topics in more detail
are books by Sakurai1, Johnson2, Sobelman3, and Bethe and Salpeter4, which are available in the
library.

1.1 Hydrogenlike ions: quick review

A very quick review here; see above textbooks for more details. You have likely seen this before in
your lectures (if not, don’t worry, everything you need to know is here also).

1.1.1 Angular separation

In general, we have the Schrodinger equation:

Ĥψ = εψ, (1)

where

Ĥ(r) =
p2

2m
+ V (r) (2)

with p = −iℏ∇. For single-electron atoms, the potential is entirely spherically symmetric, meaning:

V (r) = V (r) = − Ze2

4πϵ0 r
. (3)

Therefore, it is simplest to work in spherical coordinates, in which

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ
sin θ

∂2

∂ϕ2
.

Motivated by the spherical symmetry, we use the separation of variables for ψ:

ψ(r) = R(r)Y (θ, ϕ) =
P (r)

r
Y (θ, ϕ). (4)

1J. J. Sakurai, Modern Quantum Mechanics (2011) [in particular Chapters 3, 5, 7]
2W. R. Johnson, Atomic Structure Theory (2007)
3I. I. Sobelman, Atomic Spectra and Radiative Transitions (1992)
4H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (1977)

1

PHYS4070. Atomic Physics 1: Hydrogenlike ions – February 2023 B. M. Roberts

Putting this back into the Hamiltonian equation, leads to two equations:

1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂ϕ2
+ λY = 0, (5)

and
∂2P

∂r2
+

2m

ℏ2

(
ε− V (r)− λℏ2

2mr2

)
P = 0, (6)

where λ is a separation constant.
Notice that Eq. (5) is independent of the potential V and the energy ε; therefore the solutions

are always the same. The solutions are the spherical harmonics

Y = Ylm (7)

for integer values of λ ≡ l(l+1) andm. l takes values 0, 1, 2, 3, ..., andm takes the values−l, ..., 0, ..., l.
This is not proved here, but is done in any quantum mechanics textbook.

The spherical harmonics are orbital momentum eigenstates according to:

L2|lm⟩ = ℏ2l(l + 1)|lm⟩ (8)

Lz|lm⟩ = ℏm|lm⟩ (9)

where L = r × p is the operator of (orbital) angular momentum, and using Dirac notation so that
|lm⟩ represents spherical harmonic Ylm. Therefore, we recognise l as the total (orbital) angular
momentum, and m as its projection onto z quantisation axis. The spherical harmonics form a
complete orthonormal set, and are normalised according to∫

Y ∗
l′m′Ylm dΩ = δll′δmm′ , (10)

(dΩ = sin θdϕdθ).
Thus, the problem reduces to solving the radial equation (6), which depends on the potential V ,

which we can write as: [
−ℏ2

2m

∂2

∂r2
+ V (r) +

l(l + 1)ℏ2

2mr2

]
︸ ︷︷ ︸

Hr

P (r) = εP (r). (11)

We may therefore define the “radial Schrodinger equation”, HrP = εP . For a given l, the equation
has an infinite number of solutions – we label the bound-state solutions with n (principal quantum
number) Pnl, n = 1, 2, 3, ..., with n > l. They are normalised as∫

Pn′lPnl dr = δnn′ . (12)

For Hydrogenlike ions, V (r) = − Ze2

4πϵ0 r
, and the equation may be solved analytically. For example,

the solutions for the energies are

εn = −Z
2Ry

n2
, (13)

where Ry = mee4

8(πϵ0ℏ)2 ≈ 13.6 eV. For more general potentials (e.g., for multi-electron atoms, or when

considering finite-nuclear-size effects), the equation cannot be solved analytically, and must be solved
numerically.

2

PHYS4070. Atomic Physics 1: Hydrogenlike ions – February 2023 B. M. Roberts

1.1.2 Bound-state solutions

Note that Eq. (1) has an infinite number of solutions for any given ε. However, we are interested
in the bound state solutions, which have ψ → 0 as r → ∞, and ψ normalisable (i.e. ψ everywhere
finite).

• ψ(r) → 0 as |r| → ∞

• ψ(r) finite as |r| → 0 – and continuous

The boundary conditions become simpler in terms of the radial function, P :

• P (r) → 0 as |r| → ∞

• P (r) → 0 finite as |r| → 0

More explicitly

• Pnl(r) ∼ rl+1 as |r| → 0

• Pnl(r) ∼ exp(−
√
2|ε|) finite as |r| → ∞ (very rough)

Interestingly, these conditions hold for any atom, even multi-electron atoms. (The reason is that, for
multi-electron atoms we still have V (r) ∼ −Z/r for small r, V (r) ∼ −1/r for large r.)

For bound states, we have ε < 0. There are also unbound (continuum) states, which have ε > 0,
and P (r) ∼ sin(ωr) for large r – though we will not be directly concerned with these. The full set of
solutions (including continuum) form a closed, complete, orthogonal set.

1.1.3 Matrix elements, expectation values

Typically, in any quantum mechanics problem, we are interested in calculating amplitudes (known
as matrix elements):

⟨a|ĥ|b⟩ =
∫
ψ∗
nalama

ĥ ψnblbmb
dV, (14)

where for regular 3D spatial coordinates,

dV ≡ r2drdΩ = r2 sin θ dr dθ dϕ.

For now, we will consider only the simplest case: radial operators, which only depend on the radial
coordinate: ĥ = h(r) (sometimes called scalar operators). In this case, we have∫

ψ∗
nalama

ĥ ψnblbmb
dV =

(∫
Pnalah(r)Pnblb dr

)(∫
Y ∗
lama

Ylbmb
dΩ

)
(15)

=

(∫
Pnalah(r)Pnblb dr

)
δlalbδmamb

. (16)

Therefore, matrix elements for such operators only depend on radial P functions; and are non-zero
only transitions in which the angular quantum numbers do not change. (Notice that the r2 from the
integration measure cancelled with the two factors of 1/r from the definition of P .)

3

PHYS4070. Atomic Physics 1: Hydrogenlike ions – February 2023 B. M. Roberts

1.1.4 Atomic units

• Measure mass in units of me

• Spin (/action) in units of ℏ
• Length in units of Bohr radius a0 = aB = 4πϵ0ℏ2

mee2

• Charge in units of e (with Gaussian choice of: 4πϵ0 = 1)

– e is the elementary charge, so e = |e| > 0. Electron has charge −e. Beware: roughly half the
textbooks choose the opposite definition. Often, it’s only e2 that arises in problems, so it rarely
matters

• Energy in Hartree units, 2Ry =
mee4

4(πϵ0ℏ)2 ≈ 27.2 eV

In these units, important constants take the values: me = e = |e| = 4πϵ0 = ℏ = a0 = 1, and
speed of light c = 1/α, where α = e2

4πϵ0ℏc ≈ 1/137 is the fine structure constant. In these units, the
radial Schrodinger equation (11) takes the simple form:[

−1

2

∂2

∂r2
+ V (r) +

l(l + 1)

2r2

]
P (r) = εP (r), (17)

For Hydrogenlike ions, we again have:

V (r) = −Z
r

(18)

and

εn = − Z2

2n2
. (19)

1.2 Numerical solution to radial equation[
−1

2

∂2

∂r2
+ V (r) +

l(l + 1)ℏ2

2r2

]
P (r) = εP (r), (20)

For hydrogenlike ions, this can be solved exactly. The analytic hydrogen-like solutions are given in
many textbooks (and are on Wikipedia), so won’t be repeated here. For more general potentials,
however, it must be solved numerically. This will be the starting point for more complex systems –
only V (r) will change. The same techniques apply for general V (r) potentials.

There are many methods available to solve the equation; here I will outline a few briefly.

1.2.1 Linear multi-step method

The Schrodinger equation is a second-order ODE. It is convenient to re-cast it in terms of a pair of
coupled first-order ODEs, and represent this using a matrix notation.

Define

Q(r) ≡ dP

dr
, y(r) ≡

(
P (r)
Q(r)

)
. (21)

Then, the radial Schrodinger equation can now be expressed

dy

dr
=

(
Q(r)

−2
(
ε− V − l(l+1)

2r2

)
P (r)

)
(22)

= D(r)y(r), (23)

4

PHYS4070. Atomic Physics 1: Hydrogenlike ions – February 2023 B. M. Roberts

where D is the 2x2 matrix (that depends on r)

D =

(
0 1

−2
(
ε− V − l(l+1)

2r2

)
0

)
(24)

This has form of first-order ODE for y, but is a matrix equation.
If you’re not used to this notation, notice that this is simple a matrix form for the pair of equations:

P ′(r) = Q(r) (25)

Q′(r) = P ′′(r) = −2

(
ε− V − l(l + 1)

2r2

)
P (r), (26)

i.e., we are simply casting the second-order ODE into a pair of coupled first-order ODEs, and then
expressing this is matrix form.

Now; how to we solve the equation? First, assume we know y(r) for some point r, and want to
find y(r +∆r). Since we know the derivative, we can project forwards:

y(r +∆r) ≈ y(r) +
dy

dr
∆r. (27)

So far, this is equivalent to the simple Euler’s method, which we used in the first worksheet.
We can now be more accurate, and write instead:

y(r +∆r) = y(r) +

∫ r+∆r

r

D(r′)y(r′) dr′. (28)

(Notice that to lowest-order approximation of the integral for small ∆r, these are equivalent.)
Using an (N + 1)-step numerical integration method (more next lecture), with ∆r = Nδr, we

have

y(r +∆r) ≈ y(r + (N − 1)δr) + δr
N∑
i=0

biD(r + iδr)y(r + iδr). (29)

The bi are numerical integration “weights” – will be discussed next lecture. We move the i = N term
to the left, and solve for y(r +∆r):

y(r +∆r) ≈ [1− δrbND(r +Nδr)]−1

(
y(r + (N − 1)δr) + δr

N−1∑
i=0

D(r + iδr)y(r + iδr).

)
(30)

Therefore, we can approximate y(r+∆r) so long as N previous values y(r), y(r+ δr), y(r+ 2δr),...
are known. Note that it involves finding the inverse of a 2x2 matrix.

• Very accurate

• Need N initial points: e.g., Use low-r expansion

• Derivative operator depends on ε

Since the derivative operator depends on ε, we cannot solve for P and ε at the same time. Instead,
we have to guess ε, and then solve the equation. Most likely, this guess will not be correct – this
means the solution will not have the correct boundary condition. Keep making small adjustments to
the guessed ε until the boundary conditions match – then we have successfully solved for the bound
state.

5

PHYS4070. Atomic Physics 1: Hydrogenlike ions – February 2023 B. M. Roberts

1.2.2 Diagonalise over basis

Use some (finite) set of basis functions {Si(r)}, and write:

P (r) =
∑
i

ciSi(r). (31)

In general, this is approximate, since the basis set is finite.
Sub this in to the radial Schrodinger equation:

HP = εP.

Using Dirac notation, this gives: ∑
i

H|Si⟩ci = ε
∑
j

|Sj⟩cj (32)∑
i

⟨Sk|H|Si⟩ci = ε
∑
j

⟨Sk|Sj⟩cj, (33)

where we multiplied on the left by ⟨Sk| (and integrated). The result is just a matrix equation:∑
i

Hkici = ε
∑
j

Skjcj (34)

=⇒ Hc = εSc. (35)

This is a generalised eigenvalue matrix equation, which can be solved to yield a set of eigenvalues ε,
and eigen vectors c. Each eigenvector is the set of ci expansion coefficients. Note that if the basis set
if orthonormal, the S matrix Sij = ⟨Si|Sj⟩ is just the identity; however, this is not true in general.

In theory, any basis set will do (e.g., polynomials). In practice, since we can only use a finite
set, choosing a good basis set is important. Good choices are Gaussian basis states, B-splines, or
hydrogen-like wavefunctions.

This is discussed further at the end of the lecture notes, Sec. 1.4.

1.2.3 Cast derivative operator to matrix (finite difference method)

• Not most accurate, but simplest

We can numerically approximate the first- and second-order derivative as:

df

dr
≈ f(x+ δ/2)− f(x− δ/2)

δ
(36)

d2f

dr2
≈ f(x− δ)− 2f(x) + f(x+ δ)

δ2
. (37)

If we choose a finite spacing {..., x1, x2, x3,, xn,}, where each point is spaced δ apart: xn+1 =
xn + δ, we may write the function f as a vector in this finite space:

f =

...
f(x1)
f(x2)
f(x3)

...
f(xn)

...

. (38)

6

PHYS4070. Atomic Physics 1: Hydrogenlike ions – February 2023 B. M. Roberts

Then, we may cast the derivative as a matrix multiplication:

d2f

dr2
≈ 1

δ2

. . .

...
. . . 0 1 −2 1 0 . . .

...
. . .

...
f(x1)
f(x2)
f(x3)

...

 =
1

δ2

...

f(x0)− 2f(x1) + f(x2)
f(x1)− 2f(x2) + f(x3)
f(x2)− 2f(x3) + f(x4)

...

 . (39)

Take a moment to ensure this makes sense.

Of course, we cannot compute a matrix of infinite size. Therefore, we must choose a finite
spacing δ. Further, we must truncate the vector somewhere. We can do this by assuming f(x) = 0
for x < xmin and x > xmax. This is called the hard boundary condition.

In this case, we have a finite-dimensional matrix equation for the derivative:

d2f

dr2
≈ 1

δ2

−2 1 0 . . .
1 −2 1 0 . . .
0 1 −2 1 0 . . .

. . .

. . . 0 1 −2

f(x1)
f(x2)
f(x3)

...
f(xn)

 =
1

δ2

−2f(x1) + f(x2)

f(x1)− 2f(x2) + f(x3)
f(x2)− 2f(x3) + f(x4)

...
f(xn−1)− 2f(xn)

 . (40)

with f(x0) = f(xn+1) = 0. We use n equally spaced points from x1 to xn, so that δ,

δ =
xn − x1
n− 1

. (41)

Note that ideally, we would use rmin = 0, however, we cannot evaluate V (r) at this point. That’s
fine, though, since we know P (0) = 0. Instead we ‘drop’ this point, and shift everything along by δr.
In practise, this is like choosing rmin = δr. It’s important that the radial grid “lines-up” correctly
when using this method, since otherwise the derivative at the end-points would be ill-defined. (As
an aside: in more accurate atomic calculations, we typically do not use a uniformly spaced radial
grid, since the wavefunctions vary rapidly near the origin; in that case, the problem is circumvented
differently.)

Using this, we may re-cast the radial Schrodiner equation into a matrix equation:[
−1

2
D2 + V (r) +

l(l + 1)

2r2

]
P = εP, (42)

where D2 in the n × n second-order derivative matrix. This is a simple eigenvalue problem, which
can be solved using usual techniques. Notice that, in order for V (r) ∗ f(r) to work, V (r) (and any
other function of r) can be cast simply to a diagonal matrix:

V (x1) 0
V (x2)

V (x3)
. . .

0 V (xn)

 . (43)

Since the finite-element Hamiltonian matrix

H =

[
−1

2
D2 + V (r) +

l(l + 1)

2r2

]
7

PHYS4070. Atomic Physics 1: Hydrogenlike ions – February 2023 B. M. Roberts

is real and symmetric, we can use the lapack routine dsyev. The output will be a set of n
eigenvalues, and n eigenvectors. The eigenvalues are the energies, and the eigenvectors are the
wavefunctions (evaluated at the discrete xi points).

Note that due the the “hard boundary condition”, we have P (r) = 0 for r > rmax. However, the
correct boundary condition should be P (rn) ∼ exp(−

√
2|ε|rn). This is not a problem, so long as all

the wavefunctions we are directly interested in effectively go to zero well inside the maximum radius
rn. i.e., we must choose rn to be much larger than the typical radius of the electron orbitals we are
interested in. The expectation value for r scales as

⟨r⟩ ∼ n2

Z
aB.

Note that by solving the equation in this way, we have generated a full set of wavefunctions
(eigenvectors). We are typically only directly interested in the first few. Of course, since we approxi-
mated the derivative using finite-elements, they are not exact, however, we have roughly a full set of
orthonormal wavefunctions. This is important, since we often need to use a complete set of states to
sum over in higher-orders of perturbation theory. Recall for a perturbative expansion H → H + δh,
ψ → ψ0 + δψ, ε→ ε+ δε, we have:

|δψ⟩ =
∑
n

|n⟩⟨n|δh|ψ0⟩
ε0 − εn

. (44)

1.3 lapack/dsyev example: solve DE as matrix eigenvalue problem

lapack (Linear Algebra PACKage) is a large set of programs for solving general linear algebra
problems. It in turn uses blas (Basic Linear Algebra Subprograms), which are is a set of routines
that provide standard building blocks for performing basic vector and matrix operations. lapack
and blas are the standard way to do computational linear algebra - essentially every other tool/pro-
gramming language uses them ‘under the hood’. lapack is written in Fortran90; we can make
direct calls to these routines using c++.

lapack provides many functions for various circumstances. Since we have a real-values symmetric
matrix, and we want to solve the eigenvalue problem, we shall use the DSYEV routine: D=double (as
in double-precision float), SY=symmetric, EV=eigenvalue. We need to declare the function in our
c++ file in order to use it; the function declaration should have the following form:

Example 1.1: DSYEV Parameters. Documentation: http://www.netlib.org/lapack/explore-html/index.html.
extern "C"

int dsyev_(

char * jobz , // ’V’ = compute e. values and vectors. ’N’ = values only

char * uplo , // ’U’ = upper triangle of matrix is stored , ’L’ = lower

int * n, // dimension of matrix a

double * a, // c-style array for matrix a (ptr to array , pointer to a[0])

// On output , a contains matrix of eigenvectors

int * lda , // For us , lda=n

double * w, // array of dimension n - will hold eigenvalues

double * work ,// ’workspace ’: array of dimension lwork

int * lwork , // dimension of workspace: ~ 6*n works well

int * info // error code: 0= worked.

);

• Since we are calling a function that lives outside of c++, we must mark it with “extern “C””
(this tells the linker to use low-level C-style linking). The ‘symbol’ (function name) that we
call is dsyev .

8

http://www.netlib.org/lapack/explore-html/index.html

PHYS4070. Atomic Physics 1: Hydrogenlike ions – February 2023 B. M. Roberts

• Naming the parameters is not required in the function declaration, but I think it aids readability.

• Since we are interfacing with the Fortran routines, we must pass all the data into the function
via pointers to variables/arrays.

• Output eigenvalues are sorted, and eigenvectors are normalised to 1 (via vector inner product)

• Note: FORTRAN (language LAPACK is written in) uses column-major ordering to access 2D
arrays, wile c and c++ use row-major. This means m[i][j] in c++ is m[j][i] in FORTRAN.. so
we often need to transpose the matrix before sending to LAPACK

– Our matrix is symmetric, so this doesn’t matter, except for ‘uplo’

– ‘uplo’: ‘U’ means upper triangle in FORTRAN is stored – so lower in c++ [we can just
fill entire matrix though]

– For other LAPACK functions, you can often just tell them the matrix is a transpose, so
we don’t need to waste time transposing it ourselves

• When compiling the code, we need to pass the ‘-llapack‘ linker flag. This tells the compiler to
look in the lapack libraries for the function we are calling.

– e.g., g++ -O3 -o program program.cpp -llapack

– Some systems may also need ‘-lblas’ : g++ ... -llapack -lblas

We will go through an example for this in the workshop.

1.4 Basis of single-electron wavefunctions (“orbitals”)

Here we briefly review another method for solving the radial Schrödinger equation that is particularly
useful for multi-electron atoms. As we shall see below, the total wavefunction for a multi-electron
atom is formed from combinations of single-particle wavefunctions (which we often refer to as “or-
bitals”, though that term is used differently in many sources).

1.4.1 Algebraic solution to radial equation

Use some (finite) set of basis functions {bi(r)}, and write:

P (r) =
∑
i

cibi(r). (45)

In general, this is approximate, since the basis set is finite. As such, a good choice of basis is essential;
this will be discussed below. Remember that here P (r) is defined via the radial decomposition for
the single-particle wavefunctions

ψnlm(r) =
Pnl(r)

r
Ylm(θ, ϕ), (46)

and is a solution to the radial Schrödinger equation:

HP = εP. (47)

Solving this equation is cast to determining the expansion coefficients {ci}. Note: in general, the
basis states |bj⟩ are orthogonal or normalised, and they are not eigenstates of the Hamiltonian.

9

PHYS4070. Atomic Physics 1: Hydrogenlike ions – February 2023 B. M. Roberts

Using Dirac notation with |i⟩ = bi, this gives:∑
i

H|bi⟩ci = ε
∑
j

|bj⟩cj (48)∑
i

⟨bj|H|bi⟩ci = ε
∑
i

⟨bk|bi⟩ci, (49)

where we multiplied on the left by ⟨bj| (and integrated). The result is just a matrix equation:∑
i

Hjici = ε
∑
i

Bjici (50)

=⇒ Hc = εBc. (51)

This is a generalised eigenvalue matrix equation, which can be solved to yield a set of eigenvalues ε,
and eigen vectors c. Each eigenvector is the set of ci expansion coefficients. Note that if the basis
set if orthonormal, the S matrix Bij = ⟨bi|bj⟩ is just the identity; however, this is not true in general.
The Fortran routine, DSYGV, will solve the generalised eigenvalue problem for real, symmetric
matrices. (DSYGV is similar to DSYEV, but takes in also second matrix, B.)

Here, H and B are Nb ×Nb square matrices, with elements:

Hij = ⟨i|Ĥ|j⟩ =
∫
bi(r)Ĥbj(r) dr , Bij = ⟨i|j⟩ =

∫
bi(r)bj(r) dr, (52)

with Nb being the number of basis states (B-splines) used the the expansion (45) – not the number
of radial grid-points used for integrals. If the basis was orthonormal, S would just be the identity
matrix; in general it is not.

For the general case of H = −1
2

∂2

∂r2
+ V (r), we have

Hij = −1

2

∫
bi(r)b

′′
j (r) dr +

∫
bi(r)V (r)bj(r) dr (53)

= +
1

2

∫
b′i(r)b

′
j(r) dr +

∫
bi(r)V (r)bj(r) dr (54)

(integration by parts). In theory, these integrals can be found with extremely high accuracy using
Gaussian quadrature. For our purposes, any reasonable integration scheme will do just fine.

• Note: FORTRAN (language LAPACK is written in) uses column-major ordering to access 2D
arrays, wile c and c++ use row-major. This means m[i][j] in c++ is m[j][i] in FORTRAN.. so
we often need to transpose the matrix before sending to LAPACK

– Our matrix is symmetric, so this doesn’t matter, except for ‘uplo’

– ‘uplo’: ‘U’ means upper triangle in FORTRAN is stored – so lower in c++ [you may just
fill entire matrix]

– For other LAPACK functions, you can often just tell them the matrix is a transpose, so
we don’t need to waste time transposing it ourselves

• Don’t forget to declare the ‘dsygv ’ function with ‘extern “C”’, and use the -llapack linker
(compile) flag (you may also need the -lblas flag)

10

PHYS4070. Atomic Physics 1: Hydrogenlike ions – February 2023 B. M. Roberts

Example 1.2: DSYGV Parameters. Documentation: http://www.netlib.org/lapack/explore-html/index.html.
extern "C"

int dsygv_(

int *ITYPE , // =1 for problems of type Av=eBv

char *JOBZ , // =’V’ means calculate eigenvectors

char *UPLO , // ’U’: upper triangle of matrix is stored , ’L’: lower

int *N, // dimension of matrix A

double *A, // c-style array for matrix A (ptr to array , pointer to a[0])

// On output , A contains matrix of eigenvectors

int *LDA , // For us , LDA=N

double *B, // c-style array for matrix B [Av=eBv]

int *LDB , // For us , LDB =N

double *W, // Array of dimension N - will hold eigenvalues

double *WORK , // ’workspace ’: array of dimension LWORK

int *LWORK , // dimension of workspace: ~ 6*N works well

int *INFO // error code: 0= worked.

);

1.4.2 B-spline basis functions

There are many options for which set of basis functions to use in Eq. (45). One option that works
very well for atomic physics is to use “B-splines”.

B-splines are are a set of N piecewise polynomials of order k, defined over a sub-domain r ∈ [0, R].

• Each spline function, bi, is non-zero for only a small sub-region of the domain.

– Technical details (you don’t need to know):

– bi(r) in non-zero only for ti ≤ r < ti+n, where {t0, . . . , tN} are a series of N + 1 “knots”.

– First k knots are placed at r = 0; the final k knots are at r = R; the remaining knots are
distributed between some non-zero r0 and R.

• All splines go to zero at r = 0, except the 0th spline (index 0); the 0th spline (index 0) is only
non-zero for r < r0

• The kth spline and above [index k] are non-zero only for r > r0

• All splines go to zero at r = R, except for the final one (N − 1)th spline

• For any r ∈ [0, R],
∑

i bi(r) = 1

• Form a complete basis for any polynomial of order k on interval r ∈ [0, R]

• Typically, we choose r0 ∼ 10−4 a.u., R ∼ 30− 75 a.u., N = 30− 100, and k = 7− 9.

1.4.3 Enforce boundary conditions

There are several ways to enforce the boundary conditions, including adding extra fictitious infinite
potentials to the Hamiltonian at r = 0 and r = R. We will take a simpler approach, and enforce the
boundary conditions by discarding some of the splines.

• Discard b0 – this is the only spline non-zero at r = 0, forcing wavefunctions to be P (0) = 0

• Discard final spline bN−1 – this is the only spline non-zero at r = R, forcing wavefunctions to
be P (R) = 0 (“hard” boundary condition)

11

http://www.netlib.org/lapack/explore-html/index.html

PHYS4070. Atomic Physics 1: Hydrogenlike ions – February 2023 B. M. Roberts

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	10 	20 	30 	40 	50

b i(
r)

r/aB

i=0
3
6
9

12
15
18
21
24
27
29

Figure 1: Every 3rd spline from a set of 30 B-splines of order k = 7 defined on r ∈ [0, 50] a.u. The first
non-zero knot was placed at r0 = 10−3 a.u., and the knots where distributed uniformly over [r0, R] (though
it is typical to instead distribute them logarithmically).

• Discard b1 – We can further take advantage of low-r behaviour of the wavefunctions; P (r) ∼
rl+1. Due to form of the splines, we can force this behaviour by discarding b1 for s and p states.

• So, with N total splines, we actually use only N − 3 in the expansion Eq. (45).

12

	Atomic physics – hydrogen-like ions
	Hydrogenlike ions: quick review
	Numerical solution to radial equation
	lapack/dsyev example: solve DE as matrix eigenvalue problem
	Basis of single-electron wavefunctions (``orbitals'')

