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Overview

 Background + some models for Dark Matter

 Models for density/velocity distributions

 Gravitational probes and observables

 Production: thermal production, WIMP miracle
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Part 1: Overview + models

Image: NASA Online Kids Portal
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How we know dark matter exists
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What we know about dark matter

img: [WMAP 2018] 5



What we know about dark matter
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What we don’t know about dark matter

img: [US Cosmic Visions report, arXiv:1707.04591]

 Essentially everything else… mass, coupling, interactions

 Possible mass range: spans 90(!) orders-of-magnitude

 Though many are tightly constrained by observations
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What we don’t know about dark matter

img: [US Cosmic Visions report, arXiv:1707.04591]

 Essentially everything else… mass, coupling, interactions

 Possible mass range: spans 90(!) orders-of-magnitude

 Though many are tightly constrained by observations

Boson (due to exclusion principal)
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WIMPs

⟹ WIMP Miracle
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Detection Strategies

Make it

Break it

S
ha

ke
 it

img: [https://www.mpi-hd.mpg.de]

• More next lecture
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img: HAP / A. Chantelauze
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Part 2: Distributions, gravitational probes

Simulated dark matter halo 
from a cosmological N-body 
simulation [wiki]

 Gravitationally bound

 Frictionless

 Galactic DM halos
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Dark matter density profiles
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 Gravitationally bound
 Frictionless
 Galactic DM halos



Dark matter density profiles:
Cusp-Core Problem
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• Discrepancy between simulations/observations for low-
mass galaxies

• Simulations imply “cusp”: 
higher density at low r

• Data imply “core”: flattening 
of profile at low r

img: MNRAS 474, 1398–1411 (2018)



Dark matter density profiles:
Cusp-Core Problem
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Solutions:

• Misunderstood baryonic effects (not captured in sims)
• Indications that baryonic “feedback” effects can flatten 

out inner distribution 
• seems most favoured solution

• Beyond “standard” Λ𝐶𝐶𝐶𝐶𝐶𝐶
• Warm dark matter, DM with self-interactions
• Ultralight or “fuzzy” dark matter



Dark matter velocity distribution
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 Gravitationally bound
 Frictionless
 Galactic DM halos



Dark matter velocity distribution

[1] K. Freese, M. Lisanti, and C. Savage, Rev. Mod. Phys. 85, 1561 (2013).

≈ 235 𝑘𝑘𝑘𝑘/𝑠𝑠

𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒 ≈ 550 𝑘𝑘𝑘𝑘/𝑠𝑠

Standard Halo Model

• Typically, sharp cut-off smoothed out 

• Annual/daily modulations:

• More next lecture

17

In Galactic frame:
“boost” to earth frame



Dark matter velocity distribution
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Winter



Gravitational Lensing
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• Dark Matter mass: bends light => lensing
• Information on amount, and distribution of DM across 

galaxies

Tamara (+UQ) involved



Impacts of particle physics
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Impacts of particle physics
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Part 3: Production of DM

img: [Sandbox Studio, Chicago with Corinne Mucha, Symmetry Magazine]
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Thermal and non-thermal production
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Thermal production

 Solve eq: determine abundance at late times
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Thermal production
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g* = Effective energetic/entropic degrees of freedom

Write in terms of dimensionless variables: s’ = entropy density; S = entropy per co-moving volume



Thermal production

img: [Kolb + Turner]

 See this in action in your project 3
26

 Larger <𝝈𝝈𝝈𝝈> can withstand more 
expansion before “freezing out”

 Tricky to solve. What happens at 
low x (early times?)

x>1 => T<m => Freeze out cold



WIMP Miracle

27

< 𝜎𝜎𝜎𝜎 > ~ 3 ∗ 10−26 𝑐𝑐𝑚𝑚3/𝑠𝑠

 However, null results from direct detection appear to rule out all 
simplest “literal” WIMP models (more next week)

Assuming WIMP is initially in thermal equilibrium:
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Units Example: (Useful for Proj. 3)

Dimensionless number



Summary
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Bonus: Axions
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Bonus: Axions

 Low-mass (<< eV), high number: Axion condensate (classical axion field)

 May be cold dark matter [2]

 Nice candidate: solve two problems

 Named Axion (Wilczek) because it “cleaned up” problem
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Bonus: Axions
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Bonus: Axions
Axion-photon conversions
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Bonus: Axions
Axion-photon conversions

Igor G. Irastorza, Nature 590, 226 (2021)
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