Frontiers in Astrophysics Particle Astrophysics:

Dark Matter 1: Overview, distributions, production

Ben Roberts <u>b.roberts@uq.edu.au</u> Room 6-427

Credit to Pat Scott for many of the slides

Overview

- Background + some models for Dark Matter
- Models for density/velocity distributions
- Gravitational probes and observables
- Production: thermal production, WIMP miracle

Part 1: Overview + models

How we know dark matter exists

The only way to consistently explain:

- rotation curves + vel. dispersions
- gravitational lensing
- Cosmological data
 - Large-scale structure (2dF/Chandra/SDSS-BAO) says $\Omega_{matter} \approx 0.27$
 - BBN says that $\Omega_{baryonic}\approx 0.04$
 - $\implies \Omega_{non-baryonic} \approx 5 \times \Omega_{baryons}$
 - CMB and SN1a agree; also indicate that $\Omega_{total} \approx 1$
 - ⇒ universe is 26% dark matter, 5% baryonic (visible) matter, 69% something else

(Clowe et al., ApJL 2006)

What we know about dark matter

Must be:

- massive (gravitationally-interacting)
- unable to interact via the electromagnetic force (dark)
- non-baryonic
- "cold(ish)" (in order to allow structure formation)
- stable on cosmological timescales
- produced with the right relic abundance in the early Universe.

What we know about dark matter

Bad options:

- primordial black holes (strong experimental constraints, dubious theoretical motivation)
- MAssive Compact Halo Objects (MACHOs; baryonic)
- standard model neutrinos (too warm; insufficient relic density)

Good options:

- Weakly Interacting Massive Particles (WIMPs)
- axions or axion-like particles
- sterile neutrinos
- gravitinos, axinos

What we don't know about dark matter

- Essentially everything else... mass, coupling, interactions
- Possible mass range: spans 90(!) orders-of-magnitude

img: [US Cosmic Visions report, arXiv:1707.04591]

• Though many are tightly constrained by observations

What we don't know about dark matter

- Essentially everything else... mass, coupling, interactions
- Possible mass range: spans 90(!) orders-of-magnitude

img: [US Cosmic Visions report, arXiv:1707.04591]

• Though many are tightly constrained by observations

WIMPs

- ✓ Dark because no electromagnetic interactions
- $\checkmark~$ Cold because very massive (${\sim}10~\text{GeV}$ to ${\sim}10~\text{TeV})$
- \checkmark Non-baryonic and stable no problems with BBN or CMB
- Weak interaction means scattering with nuclei \implies detection channel
- Many WIMPs are Majorana particles (own antiparticles) \implies self-annihilation \implies detection channel
- ✓ Weak-scale annihilation cross-sections *naturally* lead to a relic abundance of the right order of magnitude \implies WIMP Miracle

Detection Strategies

- Direct detection nuclear collisions and recoils
- Indirect detection annihilations producing SM particles
- Impacts on stars the Sun and "dark stars"
- Direct production missing $E_{\rm T}$ or otherwise LHC, future colliders

img: [https://www.mpi-hd.mpg.de]

Dark Matter search strategies

Direct Method

Indirect Method $\mathbf{\gamma}$ Milky Way Sun Earth Production at the Large Hadron Collider img: HAP / A. Chantelauze ALICE

11

Part 2: Distributions, gravitational probes

Gravitationally bound

- Frictionless
- Galactic DM halos

Simulated dark matter halo from a cosmological N-body simulation [wiki]

Dark matter density profiles

N-body simulations of dark matter halo formation suggest universal (all-scale) Navarro-Frenk-White profile

Gravitationally bound

• Galactic DM halos

$$\rho(r) = \frac{\delta_c \rho_c}{r/r_s \left(1 + r/r_s\right)^2},$$

or Einasto profile

$$\rho(r) = \rho_{\rm s} \exp\left\{-2n\left[\left(\frac{r}{r_{\rm s}}\right)^{\frac{1}{|n|}} - 1\right]\right\}$$

- May be steepened in innermost region by adiabatic contraction
- ... or, may be softened in innermost region by baryonic effects
- Data seem to suggest some sort of core in Milky-Way type galaxies
 ⇒ baryonic effects favoured
- *but* inner parts of halos not well constrained by data

Dark matter density profiles: Cusp-Core Problem

 Discrepancy between simulations/observations for lowmass galaxies

- Simulations imply "cusp": higher density at low r
- Data imply "core": flattening of profile at low r

Dark matter density profiles: Cusp-Core Problem

Solutions:

- Misunderstood baryonic effects (not captured in sims)
 - Indications that baryonic "feedback" effects can flatten out inner distribution
 - seems most favoured solution
- Beyond "standard" ΛCDM
 - Warm dark matter, DM with self-interactions
 - Ultralight or "fuzzy" dark matter

Dark matter velocity distribution

- Gravitationally bound
- Frictionless
- Galactic DM halos

Maxwell-Boltzmann distribution:

$$f(v) = \frac{4}{\sqrt{\pi}} \left(\frac{3}{2}\right)^{3/2} \frac{\rho_{\chi}}{m_{\chi}} \frac{v^2}{\bar{v}^3} \exp\left(-\frac{3v^2}{2\bar{v}^2}\right)$$

- DM halo is isothermal to a first approximation
- DM kinetic energies follow Boltzmann partitioning with single temperature T
- \equiv DM velocities follow Maxwell-Boltzmann distribution with mean $\bar{v}(T)$

Dark matter velocity distribution

Standard Halo Model

$$\tilde{f}(\mathbf{v}) = \begin{cases} \frac{1}{N_{\text{esc}}} \left(\frac{3}{2\pi\sigma_v^2}\right)^{3/2} e^{-3\mathbf{v}^2/2\sigma_v^2}, & \text{for } |\mathbf{v}| < v_{\text{esc}}, \\ 0, & \text{otherwise.} \end{cases}$$

Here

[1]

$$N_{\rm esc} = \operatorname{erf}(z) - \frac{2}{\sqrt{\pi}} z e^{-z^2}, \quad v_{esc} \approx 550 \ km/s$$

with $z \equiv v_{\rm esc}/v_0$, is a normalization factor and

 $v_0 = \sqrt{2/3}\sigma_v \approx 235 \ km/s$

In Galactic frame:

"boost" to earth frame

Annual/daily modulations: More next lecture

Typically, sharp cut-off smoothed out

Dark matter velocity distribution

- DM halo is isothermal to a first approximation
- DM kinetic energies follow Boltzmann partitioning with single temperature T
- \equiv DM velocities follow Maxwell-Boltzmann distribution with mean $\bar{v}(T)$
- ... as usual, real life is more complicated (but only a little)...

Gravitational Lensing

- Dark Matter mass: bends light => lensing
- Information on amount, and distribution of DM across galaxies

Tamara (+UQ) involved

N. Jeffrey; Dark Energy Survey Collaboration

Dark Matter map from DES observations

The extent of the DES dark matter map of the sky so far, after the latest findings. The bright spots represent the highest concentrations of dark matter, while darker areas indicate low densities.

DARK ENERGY SURVEY

Impacts of particle physics

Dark matter may have a small self-interaction

- \rightarrow No longer entirely dissipationless
- \rightarrow washes out highest densities \rightarrow galaxy cores

Regular cold dark mattter

Self-interacting dark matter

Rocha, Peter, Bullock et al MNRAS 2012

Impacts of particle physics

- Dark matter may have more complicated interactions where *v* and *ρ* both matter
- E.g. models with light vector mediators that connect DM and standard model particles
- \rightarrow 'Sommerfeld' enhancement

- $\bullet \rightarrow$ enhanced DM-DM scattering for certain DM-DM relative velocities
- \rightarrow wash out structure where DM moves at a certain speed \rightarrow (e.g. cores of dwarf galaxies, maybe fixing cusp vs core issue)

van den Aarssen, Bringmann, Pfrommer, PRL 2012

Part 3: Production of DM

img: [Sandbox Studio, Chicago with Corinne Mucha, Symmetry Magazine]

Thermal and non-thermal production

Thermal Production

Everything is in perfect thermal equilibrium in early Universe

- Particle populations are all in equilibrium (cf Saha, Boltzmann Eqs) \rightarrow set by *T*
 - Velocities are all in kinetic equilibrium (cf Maxwell dist) \rightarrow set by T
- ⇒ As stuff falls out of equilibrium, populations and velocities must be evolved explicitly
- \implies Always present at some level, not always dominant in Ω_{DM}

Non-thermal Production

Any other process that dominates the DM relic density

- Some other heavy BSM particle X decays \rightarrow DM
- Decays/evaporations of topological defects like cosmic strings
- Evaporation of primordial black holes
- Not always present

Thermal production

Particle populations can be obtained by solving the Boltzmann Equation

$$\mathbf{L}f = \mathbf{C}f \tag{3}$$

for the particle phase space f, given a collision operator **C** (basically just the rate of creation – destruction of particles) and the Louiville operator **L**

$$\mathbf{L} = E \frac{\partial}{\partial t} - H |\mathbf{p}|^2 \frac{\partial}{\partial E}.$$
 (4)

Integrating over all particle momenta (see Kolb & Turner Chap 5 for details), this becomes

$$\frac{\mathrm{d}n_{\chi}}{\mathrm{d}t} + 3Hn_{\chi} = \langle \sigma v \rangle (n_{\chi, \,\mathrm{eq}}^2 - n_{\chi}^2) \tag{5}$$

Solve eq: determine abundance at late times

Thermal production

$$\frac{\mathrm{d}\boldsymbol{n}_{\chi}}{\mathrm{d}\boldsymbol{t}} + 3\boldsymbol{H}\boldsymbol{n}_{\chi} = \langle \sigma \boldsymbol{v} \rangle (\boldsymbol{n}_{\chi,\,\mathrm{eq}}^2 - \boldsymbol{n}_{\chi}^2)$$

Write in terms of dimensionless variables: s' = entropy density; S = entropy per co-moving volume

$$Y \equiv n/s'$$
 $S \equiv a^3 s'$ $x \equiv m/T$

$$\frac{\mathrm{d}Y(x)}{\mathrm{d}x} = \sqrt{\frac{\pi}{45}} \frac{mM_{\mathrm{Pl}}}{x^2} \sqrt{g_*(x)} \langle \sigma_{\mathrm{eff}} v \rangle(x) \left[Y_{\mathrm{eq}}^2(x) - Y^2(x) \right]$$

 $M_{\rm Pl} = G^{-1/2} \approx 1.2 \times 10^{19} \,{\rm GeV}$ g* = Effective energetic/entropic degrees of freedom

$$Y_{eq}(x) = \frac{45}{4\pi^4} \frac{x^2}{h_{eff}(x)} \sum_i g_i \left(\frac{m_i}{m_1}\right)^2 K_2\left(x\frac{m_i}{m_1}\right) \qquad Y_0 \approx 3.63 \times 10^{-9} \,\Omega h^2 \,\left(\frac{\text{GeV}}{m}\right)$$
$$g_i = 2J_i + 1$$

Thermal production

$$\frac{\mathrm{d}Y(x)}{\mathrm{d}x} = \sqrt{\frac{\pi}{45}} \frac{mM_{\mathrm{Pl}}}{x^2} \sqrt{g_*(x)} \langle \sigma_{\mathrm{eff}} v \rangle(x) \left[Y_{\mathrm{eq}}^2(x) - Y^2(x) \right]$$

Solving it numerically in terms of dimensionless variables $Y \equiv n/s$ and $x \equiv m_{\chi}/T$, we see the classic 'freeze-out' WIMP miracle:

• See this in action in your project 3

- Larger <σv> can withstand more expansion before "freezing out"
- Tricky to solve. What happens at low x (early times?)

$$Y_0 \approx 3.63 \times 10^{-9} \,\Omega h^2 \,\left(\frac{\text{GeV}}{m}\right)$$

x>1 => T<m => Freeze out cold

WIMP Miracle

Assuming WIMP is initially in thermal equilibrium: Its relic density is

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4} \quad \begin{array}{c} \mathbf{x} & \mathbf{q} \\ \mathbf{x} & \mathbf{q} \\ \mathbf{q} \\ \mathbf{q} \end{array}$$

 $G_F \approx 1.1 \ 10^5 \text{ GeV}^{-2} \rightarrow \text{ a new}$ mass scale in nature

m_{weak} ~ 100 GeV

 $m_X \sim 100 \text{ GeV}, g_X \sim 0.6 \rightarrow \Omega_X \sim 0.1$ $< \sigma v > \sim 3 * 10^{-26} \ cm^3/s$

Remarkable coincidence: particle physics independently predicts particles with the right density to be dark matter

 However, null results from direct detection appear to rule out all simplest "literal" WIMP models (more next week)

Units Example: (Useful for Proj. 3)

$$egin{aligned} rac{\sigma v}{\mathrm{GeV}^{-2}} &= rac{\sigma(v/c)}{\mathrm{GeV}^{-2}} = \# \ &= rac{\sigma(v/c)}{\mathrm{GeV}^{-2}} imes rac{c}{3 imes 10^{10} \mathrm{cm/s}} imes rac{\mathrm{GeV}^{-2}}{3.9 imes 10^{-28} \mathrm{cm}^2} \ &= rac{\sigma v}{\mathrm{cm}^3 \mathrm{s}^{-1}} imes rac{1}{1.17 imes 10^{-17}} \end{aligned}$$

 $egin{aligned} rac{\hbar c}{1\,\mathrm{fm}} &pprox 197.326\,\mathrm{MeV}\ \mathrm{fm}^{-1} &pprox 197.326\,\mathrm{MeV}\ \mathrm{GeV} &pprox 5.07 imes 10^{13}\,\mathrm{cm}^{-1} \end{aligned}$

$$\sigma v = 1.17 imes 10^{-17} iggl[rac{\sigma v}{\mathrm{GeV}^{-2}} iggr] \mathrm{cm}^3 \mathrm{s}^{-1}$$

Dimensionless number

Summary

- Dark matter is very obviously out there
- A number of good theories for its identity exist
- Dark matter has only been observed via gravity so far
- Its identity *does* impact its expected distribution and therefore its gravitational signatures
- Dark matter production in the early Universe places strong constraints on properties – and therefore its identity

Bonus: Axions

Bonus: Axions

Strong CP Problem

- Observed lack of CP-violation in QCD ($\theta < 10^{-10}$)
- Resolution: Pseudoscalar particle "Axion" [1]
- Low-mass (<< eV), high number: Axion condensate (classical axion field)
- May be cold dark matter [2]
- Nice candidate: solve two problems
- Named Axion (Wilczek) because it "cleaned up" problem

 Peccei, Quinn, Phys. Rev. Lett. 38, 1440 (1977); Weinberg, Phys. Rev. Lett. 40, 223 (1978).
 Preskill, Wise, Wilczek, Phys. Lett. B 120, 127 (1983); Sikivie, Phys. Rev. Lett. 51, 1415 (1983); Dine, Fischler, Phys. Lett. B 120, 137 (1983).

Bonus: Axions

Anomalous effective couplings to SM particles:

Classical Region: $m_a \sim 10^{-6} - 10^{-4} \text{ eV}$ (~MHz - GHz)Anthropic Region: $m_a \sim 10^{-10} - 10^{-8} \text{ eV}$ (~kHz - MHz)

- Saturates DM density: $\Rightarrow a_0/f_a \sim 4 \times 10^{-19}$ (QCD axion)
- (In general, DM ALP, f_a free parameter, $a_0 \sim 1/m_a$)

Bonus: Axions Axion-photon conversions

• Good for $\sim f_a < 10^{13} \text{ GeV}$

e.g.: depts.washington.edu/admx/, cast.web.cern.ch/CAST/, alps.desy.de/

[▶] Sikivie, Phys. Rev. Lett. **51**, 1415 (1983).

Bonus: Axions Axion-photon conversions

