# Frontiers in Astrophysics Particle Astrophysics:

Cosmological Parameters, ACDM, extensions, particle cosmology

Ben Roberts <u>b.roberts@uq.edu.au</u> Room 6-427

Credit to Pat Scott for many of the slides

# Introduction

- For those who don't know me:
- Ben Roberts <u>b.roberts@uq.edu.au</u>
  - Room 6-427
  - Feel free to contact (email/blackboard) w/ Q's
- Work mostly in theoretical atomic physics
  - Particle astrophysics (using atomic sensors)
  - Searches for exotic physics
  - Dark matter direct detection

#### **Overview**

- Today: Cosmological Parameters, ΛCDM, extensions, particle cosmology
  - Brief overview, revision

#### • Then: Astroparticle Physics, focusing on Dark Matter

- General properties, production
- Direct detection
- Indirect detection

## Cosmological Parameters, ΛCDM

- Cosmological Parameters, ΛCDM
  - Brief overview, revision
  - How each are constrained, combined
- Extensions
  - General idea, brief look at a few examples
- Particle Cosmology, Particle astrophysics
  - Introduction, leading into next lectures
  - Extensions involve new particles: link cosmo. w/ particle

#### Particle cosmology

- phase transitions and topological defects
- baryogenesis and leptogenesis
- impacts of new particles on:
  - cosmological power spectra
  - the CMB and reionisation
  - Big Bang nucleosynthesis
  - stars and compact objects

#### Dark matter

- gravitational signatures
- cosmological production
- collider production
- direct detection
- indirect detection

Cosmic rays, compact objects and high-energy astrophysics

- Cosmic ray production (astrophysical particle acceleration)
- Cosmic ray propagation
- High-energy  $\nu$ ,  $\gamma$ -ray and proton/nuclear cosmic ray detection
- Neutron star equation of state

#### Particle cosmology

- phase transitions and topological defects
- baryogenesis and leptogenesis
- impacts of new particles on:
  - cosmological power spectra
  - the CMB and reionisation
  - Big Bang nucleosynthesis
  - stars and compact objects

#### Dark matter

- gravitational signatures
- cosmological production
- collider production
- direct detection
- indirect detection

#### Tomorrow

#### Next Week

Cosmic rays, compact objects and high-energy astrophysics

- Cosmic ray production (astrophysical particle acceleration)
- Cosmic ray propagation
- High-energy  $\nu$ ,  $\gamma$ -ray and proton/nuclear cosmic ray detection
- Neutron star equation of state

## Wide field...

- Idea of these lectures:
- Very brief introduction to wide range
- Zoom in on a few aspects, particularly in later lectures
- Zoom in a little further in project/problems
- Please interrupt with Question/comments/discussion

## Natural units

 $c = \hbar = k_{\rm B} = 1$  $G = 1/M_{\rm Planck}^2$ 

- Mass, energy: GeV
- Length, Time: GeV<sup>-1</sup>
- Equations nicer
- Numerical: work with order ~1 quantities
  - (not always completely possible example in project 3)
- Can be tricky to convert back to "observable" units
  - Be mindful of differing conventions etc.
- "Multiply by one" trick:
  - Multiply by any quantity that has value 1 in "from" units, and desired dimension in "to" units: combos of ħ, c, k

| • | Mass                                  | $m = E = E$ $c^{2}$               | [m] = MeV                  |
|---|---------------------------------------|-----------------------------------|----------------------------|
| • | Velocity                              | $v \rightarrow \frac{v}{c}$       | [v] = 1<br>(dimension(ess) |
| 4 | Momentun                              | p=mv                              | [p] = MeV                  |
| • | Distance                              | $\Delta x = \frac{h}{\Delta x}$   | $[x] = MeV^{-1}$           |
| ¢ | Time                                  | $\Delta E = \frac{\pi}{\Delta E}$ | [E] = MeV-1                |
| • | $\frac{1}{1 + fm} = \frac{1}{1 + fm}$ | <u>ic</u> = 197 Mel<br>fm         |                            |
| • | 1 =<br>1 sec 1                        | $\frac{h}{sec} = 0.658 \times 10$ | o <sup>-21</sup> MeV       |

 $m_{
m p}\sim 1\,{
m GeV}$ 

#### Example: (Useful for Proj. 3)

$$egin{aligned} rac{\sigma v}{{
m GeV}^{-2}} &= rac{\sigma(v/c)}{{
m GeV}^{-2}} = \# \ &= rac{\sigma(v/c)}{{
m GeV}^{-2}} imes rac{c}{3 imes 10^{10} {
m cm/s}} imes rac{{
m GeV}^{-2}}{3.9 imes 10^{-28} {
m cm}^2} \ &= rac{\sigma v}{{
m cm}^3 {
m s}^{-1}} imes rac{1}{1.17 imes 10^{-17}} \end{aligned}$$

 $egin{aligned} rac{\hbar c}{1\,\mathrm{fm}} &pprox 197.326\,\mathrm{MeV} \ \mathrm{fm}^{-1} &pprox 197.326\,\mathrm{MeV} \ \mathrm{GeV} &pprox 5.07 imes 10^{13}\,\mathrm{cm}^{-1} \end{aligned}$ 

$$\sigma v = 1.17 imes 10^{-17} iggl[ rac{\sigma v}{\mathrm{GeV}^{-2}} iggr] \mathrm{cm}^3 \mathrm{s}^{-1}$$

#### Dimensionless number



### **ACDM & constraints**

### **ACDM & constraints**

#### ∧CDM

 $\Omega_{b}h^{2} \\
\Omega_{cdm}h^{2} \\
H_{0} \\
(100 \,\mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{Mpc}^{-1}h) \\
\ln(10^{10}\,A_{s}) \\
n_{s}$ 

 $\tau_{\rm reion}$ 

Baryon content of the Universe Dark matter content of the Universe Hubble parameter (typically in km s<sup>-1</sup> Mpc<sup>-1</sup>)

Amplitude of primordial scalar perturbations Tilt of primordial scalar perturbations  $\mathcal{P}(k) = A_s (k/k_\star)^{n_s-1}$ Optical depth to  $z_{\text{reionisation}}$  (and thus to  $z_{\text{CMB}}$ )

- Covered P(k) with Holger, will cover reionisation next few weeks
- Many other combinations (m = b + c)

### **ACDM & constraints**

#### What about Λ?

- Simplest "flat" ACDM: makes assumption of flatness
- $\Omega_k=0;\Rightarrow\Omega_m+\Omega_\Lambda$  = 1
- Derived parameter
- Inflation?
  - Not intrinsic part of ΛCDM

ACDM does not *demand* inflation, just as it does not *demand* any particular CDM

-inflation is just an idea for getting the required spectrum on CMB scales

-any particular DM model is just an idea for getting CDM

# **ΛCDM constraints: CMB Most important**

• Primarily sensitive to geometry of the Universe (flat/closed/open  $\rightarrow \Omega_m + \Omega_{\Lambda}$ )



- Plots from textbook: contours show CMB preferred region
- Dotted line: Flat universe  $(\Omega_m + \Omega_\Lambda = 1)$
- Aligns very well: show universe is flat (better than each  $\Omega_m$ ,  $\Omega_\Lambda$ )

Lecture with Cullan => Your current project

## **ACDM constraints: CMB**



- CMB also allows measurement of many other parameters
  - τ: How much scattering between CMB and now
  - P(k), A, n: temperature anisotropy power spectrum
     + polarisation
    - (Data little out-of-data)

Lecture with Cullan => Your current project

#### **ACDM constraints: BBN** (Big-Bang Nucleosynthesis)

# Abundances of light elements are very sensitive to number of baryon $s \rightarrow \Omega_b$

• Yp: Helium abundance, D: deuterium (2-H)



More: Ch. 4 of Kolb & Turner (details well beyond scope of course)

**Neutron lifetime** 

### **ACDM constraints: Galaxy/cluster counts**

Counting galaxies essentially tells us how much matter there is  $\rightarrow$  constrains  $\Omega_m h^2$ 

• See more in next few weeks

 $\Omega_{matter} = \Omega_{CDM} + \Omega_{baryon}$ 

Implies existence of dark matter



### **ACDM constraints: BAO**

- BAO scale: standard rulers vs sound horizon at baryon drag epoch r<sub>d</sub>
- Sensitive to everything that impacts expansion history, i.e. Ω<sub>m</sub>, H<sub>0</sub>.



Lecture with Khaled

#### **ACDM constraints: Supernovae**

#### Constrains expansion history $\rightarrow$ $H_0$ , $\Omega$ parameters



Lectures with Tamara

 CMB (Planck) vs supernovae

 — Hubble tension!

# **ACDM constraints: Combination**

- $\Omega_b/\Omega_m$ 
  - Cluster counts, red-shift surveys, CMB fluctuations: ~0.015
- Ω<sub>b</sub>
  - BBN, deuterium/helium abundance, CMB
- Ω<sub>m</sub>
  - Galaxy distributions, CMB, + combination of above
- Curvature: *k* 
  - CMB power spectrum peaks
- Ω<sub>λ</sub>
  - K, with  $\Omega_m$

# **ACDM constraints: Combination**

- Different observations depend on different combos
- Combined give current cosmology
- Essentially great agreement with standard ΛCDM
  - ... except Hubble tension



|          | Description                                                        | Symbol               | Value                                        |
|----------|--------------------------------------------------------------------|----------------------|----------------------------------------------|
|          | Physical baryon density parameter <sup>[a]</sup>                   | $\Omega_{\rm b} h^2$ | 0.022 30 ±0.000 14                           |
|          | Physical dark matter density parameter <sup>[a]</sup>              | $\Omega_{\rm c} h^2$ | 0.1188 ±0.0010                               |
| Indepen- | Age of the universe                                                | t <sub>0</sub>       | $13.799 \pm 0.021 \times 10^9$ years         |
| para-    | Scalar spectral index                                              | ns                   | 0.9667 ±0.0040                               |
| meters   | Curvature fluctuation amplitude,<br>$k_0 = 0.002 \text{ Mpc}^{-1}$ | $\Delta_R^2$         | $2.441 + 0.088 \\ -0.092 \times 10^{-9[22]}$ |
|          | Reionization optical depth                                         | τ                    | 0.066 ±0.012                                 |

| Hubble constant                                                                                | H <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                           | $67.74 \pm 0.46 \text{ km s}^{-1} \text{ Mpc}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Baryon density parameter <sup>[b]</sup>                                                        | Ω <sub>b</sub>                                                                                                                                                                                                                                                                                                                                                                           | 0.0486 ±0.0010 <sup>[e]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Dark matter density parameter <sup>[b]</sup>                                                   | Ω <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                           | 0.2589 ±0.0057 <sup>[f]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Matter density parameter <sup>[b]</sup>                                                        | Ω <sub>m</sub>                                                                                                                                                                                                                                                                                                                                                                           | 0.3089 ±0.0062                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Dark energy density parameter <sup>[b]</sup>                                                   | $\Omega_{\Lambda}$                                                                                                                                                                                                                                                                                                                                                                       | 0.6911 ±0.0062                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Critical density                                                                               | $ ho_{\rm crit}$                                                                                                                                                                                                                                                                                                                                                                         | $(8.62 \pm 0.12) \times 10^{-27} \text{ kg/m}^{3[g]}$                                                                                                                                                                                                                                                                                                                                                                                                       |
| The present root-mean-square matter fluctuation averaged over a sphere of radius $8h^{-1}$ Mpc | $\sigma_8$                                                                                                                                                                                                                                                                                                                                                                               | 0.8159 ±0.0086                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Redshift at decoupling                                                                         | Ζ,                                                                                                                                                                                                                                                                                                                                                                                       | 1 089.90 ±0.23                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Age at decoupling                                                                              | t.                                                                                                                                                                                                                                                                                                                                                                                       | 377 700 ±3200 years <sup>[22]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Redshift of reionization (with uniform prior)                                                  | z <sub>re</sub>                                                                                                                                                                                                                                                                                                                                                                          | 8.5 <sup>+1.0</sup> <sub>-1.1</sub> <sup>[23]</sup>                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                | Hubble constantBaryon density parameterDark matter density parameterDark matter density parameterMatter density parameterDark energy density parameterDark energy density parameterCritical densityThe present root-mean-square matter fluctuation<br>averaged over a sphere of radius $8h^{-1}$ MpcRedshift at decouplingAge at decouplingRedshift of reionization (with uniform prior) | Hubble constant $H_0$ Baryon density parameter[b] $\Omega_b$ Dark matter density parameter[b] $\Omega_c$ Matter density parameter[b] $\Omega_m$ Dark energy density parameter[b] $\Omega_{\Lambda}$ Critical density $\rho_{crit}$ The present root-mean-square matter fluctuation<br>averaged over a sphere of radius $8h^{-1}$ Mpc $\sigma_8$ Redshift at decoupling $z_*$ Age at decoupling $t_*$ Redshift of reionization (with uniform prior) $z_{re}$ |



#### **Extensions**

#### Extensions

- Many (infinite) possible extensions
  - Each could constitute entire lecture/course
- Many are tightly constrained by observation
- Careful in analysis: often analysis done assuming ACDM (sometimes have to make assumptions)
- But when trying to constrain beyond-ΛCDM parameters, this can clearly lead to errors
  - Your project 2

#### **Extensions: DE + curvature**

- You can allow non-zero curvature  $\Omega_k \neq 0$
- Can also postulate dark energy is not cosmological constant  $\implies w \neq -1$  in  $\rho_{DE} = \rho_{DE,0} a^{-3(1+w)}$  $\implies$  "wCDM" with w a free parameter



#### **Extensions: DE**



$$P_{\rm DE} = w \rho_{\rm DE} c^2$$

#### Tightly constrained by observations

Equation of state of dark energy

 $-0.980 \pm 0.053$ 

# eg: Variation of fundamental constants

- If certain constants were even slightly different: no atoms, no planets, no life..
- (No researchers to ask the question)
- Fine tuning problem
- Perhaps take different values long ago, or far away

$$lpha = rac{1}{4\piarepsilon_0}rac{e^2}{\hbar c}pprox rac{1}{137}$$

• How to test?

### Atomic Absorption Lines, large z



- Compare lab to high-z
- Fit for z and shift
- Requires atomic calculations

#### Variation of fine structure constant

$$lpha = rac{1}{4\piarepsilon_0}rac{e^2}{\hbar c}pprox rac{1}{137}$$

- Atomic energy levels: absorption spectra
- Quasar absorption: measure a at large z
- Hint for variation (hard to rule out systematics)



J. K. Webb, J. A. King, M. T. Murphy, V. V. Flambaum, R. F. Carswell, and M. B. Bainbridge, Phys. Rev. Lett. **107**, 191101 (2011).

- In theory: Can measure in lab!
- Earth revolves around sun: large  $\Delta R$
- Need clocks good to  $\sim \! 10^{-21}$

# e.g.: Deviation from GR

- Many models for non-GR gravity
  - E.g., scalar-tensor theories
  - Some quantum, some classical (effective)
- Motivation: Quantum theory of Gravitation
- Motivation: Dark matter + dark energy
- Very tightly constrained in some circumstances
  - But hard to do on very weak scales

### **New particles**

- New models often imply new particles
  - impacts of new particles on:
    - cosmological power spectra
    - the CMB and reionisation
    - Big Bang nucleosynthesis
    - stars and compact objects

- Constrain new-physics models
  - Require calculations of particle interactions

#### Extensions

- Covered just a few of simplest extensions
  Possibilities are essentially infinite..
- However, combination of observables (CMB, BBN, LHC etc.) place tight constraints
- Many ways to hunt for and constrain them!

#### **Particle Physics 101:**



# **Particle Interactions**

Interactions mediated by particle exchange



- a,b annihilate, producing c,d
  - Mediated by φ particle

- Initial state (a,b) scatter
- Form final state (c,d)
- Calculate:
  - Vertex factor (interactions)
  - Propagator (exchange particle)

# **Particle Interactions: simplified**



In general: consider all possible interactions

- Often: can simplify
  - Effective interaction

- Effective interaction:
  - Can be calculated (e.g., non-rel limit)
  - Can be simply observed (treat as unknown observable)

Interaction rates, cross-sections

$$R = n \, v \, \sigma imes N_{ ext{target}}$$

- Rate parameterised via cross-section,  $\sigma$
- n is volume density of projectiles
- Can think of this as definition of  $\sigma$
- σ Calculated using QM, QFT

$$\frac{d\sigma}{d\Omega} \qquad \qquad \frac{d\sigma}{d(q^2)} \qquad \qquad \frac{d\sigma}{dE}$$

• Next lecture: Dark Matter

