Frontiers in Astrophysics Particle Astrophysics:

Cosmological Parameters, Λ CDM, extensions, particle cosmology

Ben Roberts
b.roberts@uq.edu.au
Room 6-427

Introduction

- For those who don't know me:
- Ben Roberts - b.roberts@uq.edu.au
- Room 6-427
- Feel free to contact (email/blackboard) w/ Q's
- Work mostly in theoretical atomic physics
- Particle astrophysics (using atomic sensors)
- Searches for exotic physics
- Dark matter direct detection

Overview

- Today: Cosmological Parameters, $\Lambda C D M$, extensions, particle cosmology
- Brief overview, revision
- Then: Astroparticle Physics, focusing on Dark Matter
- General properties, production
- Direct detection
- Indirect detection

Cosmological Parameters, ^CDM

- Cosmological Parameters, 1 CDM
- Brief overview, revision
- How each are constrained, combined
- Extensions
- General idea, brief look at a few examples
- Particle Cosmology, Particle astrophysics
- Introduction, leading into next lectures
- Extensions involve new particles: link cosmo. w/ particle

Particle cosmology

- phase transitions and topological defects
- baryogenesis and leptogenesis
- impacts of new particles on:
- cosmological power spectra
- the CMB and reionisation
- Big Bang nucleosynthesis
- stars and compact objects

Dark matter

- gravitational signatures
- cosmological production
- collider production
- direct detection
- indirect detection

Cosmic rays, compact objects and high-energy astrophysics

- Cosmic ray production (astrophysical particle acceleration)
- Cosmic ray propagation
- High-energy ν, γ-ray and proton/nuclear cosmic ray detection
- Neutron star equation of state

Particle cosmology

- phase transitions and topological defects
- baryogenesis and leptogenesis
- impacts of new particles on:
- cosmological power spectra
- the CMB and reionisation
- Big Bang nucleosynthesis
- stars and compact objects

Dark matter

- gravitational signatures
- cosmological production
- collider production
- direct detection
- indirect detection

Tomorrow

Next Week

Cosmic rays, compact objects and high-energy astrophysics

- Cosmic ray production (astrophysical particle acceleration)
- Cosmic ray propagation
- High-energy ν, γ-ray and proton/nuclear cosmic ray detection
- Neutron star equation of state

Wide field...

- Idea of these lectures:
- Very brief introduction to wide range
- Zoom in on a few aspects, particularly in later lectures
- Zoom in a little further in project/problems
- Please interrupt with

Question/comments/discussion

$$
\begin{array}{r}
c=\hbar=k_{\mathrm{B}}=1 \\
G=1 / M_{\text {Planck }}^{2}
\end{array}
$$

- Mass, energy: GeV
- Length, Time: GeV^{-1}
- Equations nicer
- Numerical: work with order ~1 quantities
- (not always completely possible - example in project 3)
- Can be tricky to convert back to "observable" units
- Be mindful of differing conventions etc.
- "Multiply by one" trick:
- Multiply by any quantity that has value 1 in "from" units, and desired dimension in "to" units: combos of $\uparrow, \mathrm{c}, \mathrm{k}$
- Mass

$$
m=\frac{E}{c^{2}}=E
$$

$$
[m]=M e V
$$

- Velocity $\quad v \rightarrow \frac{v}{c}$
- Momentum $p=m v$

$$
[v]=1
$$

(Dimensionless)

$$
[p]=\text { MeV }
$$

- Distance $\Delta x=\frac{\hbar}{\Delta p}$

$$
[x]=\mathrm{MeV}^{-1}
$$

- Time $\Delta t=\frac{\hbar}{\Delta E}$

$$
[\epsilon]=\mathrm{MeV}^{-1}
$$

- $\frac{1}{1 \mathrm{fm}}=\frac{\hbar c}{1 \mathrm{fm}}=197 \mathrm{MeV}$
- $\frac{1}{1 \mathrm{sec}}=\frac{\hbar}{1 \mathrm{sec}}=0.658 \times 10^{-21} \mathrm{MeV}$
$m_{p} \sim 1 \mathrm{GeV}$

Example: (Useful for Proj. 3)

$$
\begin{aligned}
\frac{\sigma v}{\mathrm{GeV}^{-2}} & =\frac{\sigma(v / c)}{\mathrm{GeV}^{-2}}=\# \\
& =\frac{\sigma(v / c)}{\mathrm{GeV}^{-2}} \times \frac{c}{3 \times 10^{10} \mathrm{~cm} / \mathrm{s}} \times \frac{\mathrm{GeV}^{-2}}{3.9 \times 10^{-28} \mathrm{~cm}^{2}} \\
& =\frac{\sigma v}{\mathrm{~cm}^{3} \mathrm{~s}^{-1}} \times \frac{1}{1.17 \times 10^{-17}}
\end{aligned}
$$

$\frac{\hbar c}{1 \mathrm{fm}} \approx 197.326 \mathrm{MeV}$ $\mathrm{fm}^{-1} \approx 197.326 \mathrm{MeV}$
$\mathrm{GeV} \approx 5.07 \times 10^{13} \mathrm{~cm}^{-1}$

Dimensionless number

$$
\sigma v=1.17 \times 10^{-17}\left[\frac{\sigma v}{\mathrm{GeV}^{-2}}\right] \mathrm{cm}^{3} \mathrm{~s}^{-1}
$$

Part 1:

^CDM \& constraints

$\Lambda C D M \&$ constraints

^CDM

$\left(100 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1} h\right)$
$\tau_{\text {reion }}$

Baryon content of the Universe
Dark matter content of the Universe
Hubble parameter (typically in $\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}$)
Amplitude of primordial scalar perturbations Tilt of primordial scalar perturbations $\mathcal{P}(k)=A_{s}\left(k / k_{\star}\right)^{n_{s}-1}$
Optical depth to $Z_{\text {reionisation }}$ (and thus to z_{CMB})

- Covered $P(k)$ with Holger, will cover reionisation next few weeks
- Many other combinations ($m=b+c$)

^CDM \& constraints

- What about Λ ?

- Simplest "flat" \wedge CDM: makes assumption of flatness
- $\Omega_{k}=0 ; \Rightarrow \Omega_{m}+\Omega_{\Lambda}=1$
- Derived parameter
- Inflation?
- Not intrinsic part of $\Lambda C D M$
Λ CDM does not demand inflation, just as it does not demand any particular CDM
-inflation is just an idea for getting the required spectrum on CMB scales
-any particular DM model is just an idea for getting CDM

^CDM constraints: CMB Most important

- Primarily sensitive to geometry of the Universe (flat/closed/open $\rightarrow \Omega_{m}+\Omega_{\Lambda}$)

- Plots from textbook: contours show CMB preferred region
- Dotted line: Flat universe $\left(\Omega_{m}+\Omega_{\Lambda}=1\right)$
- Aligns very well: show universe is flat (better than each $\Omega_{m}, \Omega_{\Lambda}$) Lecture with Cullan => Your current project

^CDM constraints: CMB

- CMB also allows measurement of many other parameters
- τ : How much scattering between CMB and now
- $P(k), A, n$: temperature anisotropy power spectrum + polarisation
- (Data little out-of-data)

Lecture with Cullan => Your current project

^CDM constraints: BBN (Big-Bang Nucleosynthesis)

Abundances of light elements are very sensitive to number of baryons $\rightarrow \Omega_{b}$

- Yp: Helium abundance, D: deuterium (2-H)

- Lithium problem
- (but more difficult)

More: Ch. 4 of Kolb \& Turner (details well beyond scope of course)

^CDM constraints: Galaxy/cluster counts

Counting galaxies essentially tells us how much matter there is
\rightarrow constrains $\Omega_{m} h^{2}$

- See more in next few weeks
$\Omega_{\text {matter }}=\Omega_{C D M}+\Omega_{\text {baryon }}$
- Implies existence of dark matter

Dark matter density $h^{2} \Omega_{\mathrm{dm}}$

^CDM constraints: BAO

- BAO scale: standard rulers vs sound horizon at baryon drag epoch r_{d}
- Sensitive to everything that impacts expansion history, i.e. Ω_{m}, H_{0}.

- Lecture with Khaled

^CDM constraints: Supernovae

Constrains expansion history $\rightarrow H_{0}, \Omega$ parameters

- Lectures with Tamara
- CMB (Planck) vs supernovae
\leftarrow Hubble tension!

^CDM constraints: Combination

- Ω_{b} / Ω_{m}
- Cluster counts, red-shift surveys, CMB fluctuations: ~0.015
- $\boldsymbol{\Omega}_{b}$
- BBN, deuterium/helium abundance, CMB
- Ω_{m}
- Galaxy distributions, CMB, + combination of above
- Curvature: \boldsymbol{k}
- CMB power spectrum peaks
- Ω_{λ}
- K, with Ω_{m}

^CDM constraints: Combination

- Different observations depend on different combos
- Combined give current cosmology
- Essentially great agreement with standard Λ CDM
- ... except Hubble tension

	Description	Symbol	Value
Independent parameters	Physical baryon density parameter ${ }^{[a]}$	$\Omega_{\mathrm{b}} h^{2}$	0.02230 ± 0.00014
	Physical dark matter density parameter ${ }^{[a]}$	$\Omega_{\mathrm{c}} h^{2}$	0.1188 ± 0.0010
	Age of the universe	t_{0}	$13.799 \pm 0.021 \times 10^{9}$ years
	Scalar spectral index	$n_{\text {s }}$	0.9667 ± 0.0040
	Curvature fluctuation amplitude, $k_{0}=0.002 \mathrm{Mpc}^{-1}$	Δ_{R}^{2}	$2.441{ }_{-0.092}^{+0.088} \times 10^{-9[22]}$
	Reionization optical depth	τ	0.066 ± 0.012

Calculated values	Hubble constant	H_{0}	$67.74 \pm 0.46 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$
	Baryon density parameter ${ }^{[b]}$	Ω_{b}	$0.0486 \pm 0.0010^{[\mathrm{e}]}$
	Dark matter density parameter ${ }^{[b]}$	Ω_{c}	$0.2589 \pm 0.0057{ }^{[f]}$
	Matter density parameter ${ }^{[b]}$	Ω_{m}	0.3089 ± 0.0062
	Dark energy density parameter ${ }^{[b]}$	Ω_{Λ}	0.6911 ± 0.0062
	Critical density	$\rho_{\text {crit }}$	$(8.62 \pm 0.12) \times 10^{-27} \mathrm{~kg} / \mathrm{m}^{3[g]}$
	The present root-mean-square matter fluctuation averaged over a sphere of radius $8 h^{-1} \mathrm{Mpc}$	σ_{8}	0.8159 ± 0.0086
	Redshift at decoupling	z.	1089.90 ± 0.23
	Age at decoupling	t.	377700 ± 3200 years $^{[22]}$
	Redshift of reionization (with uniform prior)	$z_{\text {re }}$	$8.5_{-1.1}^{+1.0}[23]$

Part 2:

Extensions

Extensions

- Many (infinite) possible extensions
- Each could constitute entire lecture/course
- Many are tightly constrained by observation
- Careful in analysis: often analysis done assuming ^CDM (sometimes have to make assumptions)
- But when trying to constrain beyond- Λ CDM parameters, this can clearly lead to errors - Your project 2

Extensions: DE + curvature

- You can allow non-zero curvature $\Omega_{k} \neq 0$
- Can also postulate dark energy is not cosmological constant $\Longrightarrow w \neq-1$ in $\rho_{\mathrm{DE}}=\rho_{\mathrm{DE}, 0} \mathrm{a}^{-3(1+w)}$
\Longrightarrow " $w C D M$ " with w a free parameter

Extensions: DE

Equation of state of dark energy

$$
P_{\mathrm{DE}}=w \rho_{\mathrm{DE}} c^{2}
$$

Tightly constrained by observations

eg: Variation of fundamental constants

- If certain constants were even slightly different: no atoms, no planets, no life..
- (No researchers to ask the question)
- Fine tuning problem
- Perhaps take different values long ago, or far away

$$
\alpha=\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{\hbar c} \approx \frac{1}{137}
$$

- How to test?

Atomic Absorption Lines, large z

Variation of fine structure constant

$$
\alpha=\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{\hbar c} \approx \frac{1}{137}
$$

- Atomic energy levels: absorption spectra
- Quasar absorption: measure a at large z
- Hint for variation (hard to rule out systematics)

J. K. Webb, J. A. King, M. T. Murphy, V. V. Flambaum, R. F. Carswell, and M. B. Bainbridge, Phys. Rev. Lett. 107, 191101 (2011).
- In theory: Can measure in lab!
- Earth revolves around sun: large ΔR
- \quad Need clocks good to $\sim \mathbf{1 0}^{-\mathbf{2 1}}$

e.g.: Deviation from GR

- Many models for non-GR gravity
- E.g., scalar-tensor theories
- Some quantum, some classical (effective)
- Motivation: Quantum theory of Gravitation
- Motivation: Dark matter + dark energy
- Very tightly constrained in some circumstances
- But hard to do on very weak scales

New particles

- New models often imply new particles
- impacts of new particles on:
- cosmological power spectra
- the CMB and reionisation
- Big Bang nucleosynthesis
- stars and compact objects
- Constrain new-physics models
- Require calculations of particle interactions

Extensions

- Covered just a few of simplest extensions - Possibilities are essentially infinite..
- However, combination of observables (CMB, BBN, LHC etc.) place tight constraints
- Many ways to hunt for and constrain them!

Particle Physics 101:

Particle Interactions

- Interactions mediated by particle exchange

- a,b annihilate, producing c,d
- Mediated by ϕ particle

- Initial state (a,b) scatter
- Form final state (c,d)
- Calculate:
- Vertex factor (interactions)
- Propagator (exchange particle)

Particle Interactions: simplified

- In general: consider all possible interactions
- Often: can simplify
- Effective interaction
- Effective interaction:
- Can be calculated (e.g., non-rel limit)
- Can be simply observed
(treat as unknown observable)

Interaction rates, cross-sections

$$
R=n v \sigma \times N_{\text {target }}
$$

- Rate parameterised via cross-section, σ
- n is volume density of projectiles
- Can think of this as definition of σ
- σ Calculated using QM, QFT

$$
\frac{d \sigma}{d \Omega} \quad \frac{d \sigma}{d\left(q^{2}\right)} \quad \frac{d \sigma}{d E}
$$

- Next lecture: Dark Matter
Æ

