Variation of fundamental constants: Search for new physics around a supermassive black hole

Benjamin M. Roberts (UQ)

Aurelien Hees (SYRTE), Tuan Do (UCLA) UCLA Galactic Center Group (Andrea Ghez *et al.*) National Astronomical Observatory of Japan Team

> Astronomy Colloquium University of Melbourne

> > 9 August 2023

Standard Model: Quantum theory of particles + interactions

- Predicted new particles (W/Z bosons, quarks)
- Correctly predicts electron magnetic moment to 10 digits!
- Discovery of Higgs boson

General Relativity: Einstein's theory of gravitation, space-time

- From precession of Mercury to gravitational waves at LIGO
- Tested from small to extra-galactic length scales
- However...

Several deep inconsistencies

Matter–Anti-matter asymmetry

- Why is there far more matter than antimatter in the universe?
- Not enough CP-violation in the Standard Model to explain this

Several deep inconsistencies

Matter–Anti-matter asymmetry

- Why is there far more matter than antimatter in the universe?
- Not enough CP-violation in the Standard Model to explain this

Quantum theory of gravity

- Standard Model and general relativity are not compatible
- No working quantum theory of gravitation

Several deep inconsistencies

Matter–Anti-matter asymmetry

- Why is there far more matter than antimatter in the universe?
- Not enough CP-violation in the Standard Model to explain this

Quantum theory of gravity

- Standard Model and general relativity are not compatible
- No working quantum theory of gravitation

Dark matter and dark energy

- Dark energy: accelerated expansion
- Dark matter: galactic rotation curves etc.
- Make up most (\sim 95%) of the Universe unexplained

Dark Matter: what we know

- $\bullet~\sim 80\%$ of matter in the universe
- Rotation curves + velocity dispersion
- Cosmic Microwave background
- Gravitational lensing
- Structure formation

B. M. Roberts (UQ

...everything else

• Possible mass range: spans 90(!!) orders-of-magnitude

• Very strong evidence for some kind of new particles/fields - but we have no idea where to look

Search for physics beyond the Standard Model

Search for specific theories

- Other theories make *slightly* different predictions from SM+GR
- Dedicated experiment to test specific theories
- Targeted and precise: but narrow in scope
- Example: Large Hadron collider, CERN
- So far: no luck

CERN

• General search for violations of the deep assumptions of above theories

• General search for violations of the deep assumptions of above theories

Search for strange/exotic signals: expect to find zero

- ${\scriptstyle \bullet}\,$ Look for physics not included in SM+GR
- Non-zero measurement is sign of new physics
- Example: Equivalence principal (laws of nature are the same everywhere)

• Such violations arise naturally in many beyond-Standard-Model theories

Variation of Fundamental Constants

Are the laws of nature the same everywhere in the Universe?

lpha pprox 1/137.036....= $\alpha(\mathbf{x}, t)$?

Not predicted by theory: have to be measured

- Electron masses: $m_e pprox 9.109... imes 10^{-31} \, {
 m kg}$
- Electron charge: $-e \approx -1.602... \times 10^{-19} \, \mathrm{C}$
- Speed of light: c = 299792458 m/s

Some questions

- Why do they take their specific values?
- Fine tuning problem: if even slightly different: no atoms, no life (no one to ask this question)
- Have they always had the same value? Are they the same everywhere?

Fundamental Constants: not so constant?

• Issue: ambiguity from units

Unit-less ratios

- Mass ratio: $m_p/m_e \approx 1836.15267343$
- Fine structure constant
 - Determines strength of electromagnetic interactions

Variation of constants – atomic transitions

- Atomic energy levels (and therefore transition frequencies) depend on fundamental constants .
- Shift in transition frequency may be due to change in constants .

$$\omega^{A} = \underbrace{F_{A}(\alpha)}_{\text{Transition specific}} \times \underbrace{m_{e}c^{2}\alpha^{2}}_{\text{Units}}$$

I ransition-specific

Variation of constants – atomic transitions

- Atomic energy levels (and therefore transition frequencies) depend on **fundamental constants**
- Shift in transition frequency may be due to change in constants

Variation of constants – meaningful?

$$\frac{\Delta\omega}{\omega} = K \frac{\Delta\alpha}{\alpha} \qquad \qquad \left(K \equiv \frac{\partial\omega}{\partial\alpha} \frac{\alpha_0}{\omega} \right)$$

Example: transitions in H

$$\omega_{\rm SI} = \frac{m_e c^2 \alpha^2}{2} \left(\frac{1}{n^2} - \frac{1}{n'^2} \right) F(Z\alpha) \qquad \qquad \omega_{\rm atomic} = \frac{1}{2} \left(\frac{1}{n^2} - \frac{1}{n'^2} \right) F(Z\alpha)$$

Variation of constants – meaningful?

$$\frac{\Delta\omega}{\omega} = K \frac{\Delta\alpha}{\alpha} \qquad \qquad \left(K \equiv \frac{\partial\omega}{\partial\alpha} \frac{\alpha_0}{\omega} \right)$$

Example: transitions in H

$$\omega_{\rm SI} = \frac{m_e c^2 \alpha^2}{2} \left(\frac{1}{n^2} - \frac{1}{n'^2} \right) F(Z\alpha) \qquad \qquad \omega_{\rm atomic} = \frac{1}{2} \left(\frac{1}{n^2} - \frac{1}{n'^2} \right) F(Z\alpha)$$

Problem: I can change dependence on α by changing units!

Even though α in dimensionless, issue remains

Which unit system is correct? (Obviously nonsense question)

Variation of constants – meaningful?

$$\frac{\Delta\omega}{\omega} = K \frac{\Delta\alpha}{\alpha} \qquad \qquad \left(K \equiv \frac{\partial\omega}{\partial\alpha} \frac{\alpha_0}{\omega} \right)$$

Example: transitions in H

$$\omega_{\rm SI} = \frac{m_e c^2 \alpha^2}{2} \left(\frac{1}{n^2} - \frac{1}{n'^2} \right) F(Z\alpha) \qquad \qquad \omega_{\rm atomic} = \frac{1}{2} \left(\frac{1}{n^2} - \frac{1}{n'^2} \right) F(Z\alpha)$$

Problem: I can change dependence on α by changing units!

Even though α in dimensionless, issue remains

Which unit system is correct? (Obviously nonsense question)

• K only uniquely defined up to additive constant

Variation of constants – meaningful? Yes (with caution)!

$$\frac{\Delta\omega}{\omega} = \kappa \frac{\Delta\alpha}{\alpha} \qquad \qquad \left(\kappa \equiv \frac{\partial\omega}{\partial\alpha} \frac{\alpha_0}{\omega}\right)$$

Variation of constants – meaningful? Yes (with caution)!

$$\frac{\Delta\omega}{\omega} = \kappa \frac{\Delta\alpha}{\alpha} \qquad \qquad \left(\kappa \equiv \frac{\partial\omega}{\partial\alpha} \frac{\alpha_0}{\omega}\right)$$

Solution: frequency ratios:

$$\frac{\delta\left(\omega_{A}/\omega_{B}\right)}{\left(\omega_{A}/\omega_{B}\right)} = K_{A}\frac{\delta\alpha}{\alpha} - K_{B}\frac{\delta\alpha}{\alpha} = (K_{A} - K_{B})\frac{\delta\alpha}{\alpha}$$

Variation of constants – meaningful? Yes (with caution)!

$$\frac{\Delta\omega}{\omega} = K \frac{\Delta\alpha}{\alpha} \qquad \qquad \left(K \equiv \frac{\partial\omega}{\partial\alpha} \frac{\alpha_0}{\omega} \right)$$

Solution: frequency ratios:

$$\frac{\delta\left(\omega_{A}/\omega_{B}\right)}{\left(\omega_{A}/\omega_{B}\right)} = K_{A}\frac{\delta\alpha}{\alpha} - K_{B}\frac{\delta\alpha}{\alpha} = (K_{A} - K_{B})\frac{\delta\alpha}{\alpha}$$

- Unit ambiguity cancels in ratios
- Must have two lines (minimum) at each spacetime location
 - Not enough to have one line at two different locations
- $K_A K_B$ non-zero only due to relativistic corrections

Dzuba, Flambaum, Webb, PRL82, 888 (1999); Kozlov, Budker, Ann.Phys. 1800254 (2018). Savalle, Hees, Frank, Cantin, Pottie, BMR, Cros, McAllister, Wolf, PRL126, 051301 (2021)

Searching for Variation of Fundamental Constants

Variation of Fundamental Constants - how to observe

- Observe spectra from distant stars
- Compare to measurements on Earth
- Wavelengths (frequencies) differ: variation in α ?
- **Problem:** What about red-shift?

Variation of Fundamental Constants – how to observe

- Observe spectra from distant stars
- Compare to measurements on Earth
- Wavelengths (frequencies) differ: variation in α ?
- Problem: What about red-shift?

$$\frac{\delta\omega}{\omega} = \mathbf{K} \frac{\mathbf{\Delta}\alpha}{\alpha}$$

- K (sensitivity coeficient) must be calculated
- Need to observe multiple spectra
- K larger for heavy atoms

- Large-scale many-body calculations of complex atoms
- Must be fully relativistic, account for electron correlations
- Calculate $\delta \omega / \delta \alpha$

 $H\Psi_A = E_A \Psi_A$

AMBIT (open source): Kahl, Berengut, Comp. Physics. Communications, 2019 Based on CI+MBPT: Dzuba, Flambaum, Kozlov, Phys. Rev. A 54, 3948 (1996).

Configuration Interaction + MBPT

- Separate "core" and "valence" electrons
 - Energy to excite core \gg Energy to excite valence
 - Core stays static (to leading approx.)
 - e.g., Mg : Ne-like core $+ 3s^2$

Configuration Interaction + MBPT

- Separate "core" and "valence" electrons
 - Energy to excite core \gg Energy to excite valence
 - Core stays static (to leading approx.)
 - e.g., Mg : Ne-like core $+ 3s^2$
- Treat valence electrons "exactly" using CI
- Use MBPT for core-valence interactions

Configuration Interaction + MBPT

- Separate "core" and "valence" electrons
 - * Energy to excite core \gg Energy to excite valence
 - Core stays static (to leading approx.)
 - e.g., Mg : Ne-like core $+ 3s^2$
- Treat valence electrons "exactly" using CI
- Use MBPT for core-valence interactions

CI part:

• Allow 1 and 2 particle excitations from "leading configuration" - e.g., Mg:

$$\Psi=c_1|3s^2
angle+c_2|3s4s
angle+c_3|3s3d
angle+c_4|4s^2
angle\dots$$

- Not exact, because expansion isn't infinite: N terms
- Solve Schrodinger equation: $N \times N$ eigenvalue problem

$$\sum_{J}\left(\langle I|H|J
angle-E\delta_{IJ}
ight)c_{J}=0$$

"Emu CI" with AMBiT

$$\psi = \sum_{I} c_{I} |I\rangle$$

 $\langle I|H|J
angle$

• Not all configurations *I*, *J* equally important

"Emu CI" with AMBiT

$$\psi = \sum_{I} c_{I} |I\rangle = \sum_{A} c_{A} |A\rangle + \sum_{B} c_{B} |B\rangle \quad (|c_{A}| \gg |c_{B}|)$$
 $\langle I|H|J
angle$

- Not all configurations *I*, *J* equally important
- Split into two groups: small group of important configurations + rest

"Emu CI" with AMBiT

$$\psi = \sum_{I} c_{I} |I\rangle = \sum_{A} c_{A} |A\rangle + \sum_{B} c_{B} |B\rangle \quad (|c_{A}| \gg |c_{B}|)$$

 $\langle I | \Pi | J \rangle$

- Not all configurations I, J equally important
- Split into two groups: small group of important configurations + rest
- Include all diagonal elements
- Include all involving important set
- Exclude cross-terms among 'rest'
- Drastically reduces memory required

AMBIT (open source): Kahl, Berengut, Comp. Physics. Communications, 2019 Based on CI+MBPT: Dzuba, Flambaum, Kozlov, Phys. Rev. A 54, 3948 (1996).

Result: accurate k for many systems

TABLE 1. Atomic properties of the absorption lines used in this analysis. The wavelengths *i* are experimental values reported in [46]. The sensitivity to the fine structure constant *k_a* is compated from *ab initio* calculation using the Asimir software [45], see the discussion in Sec. I from the Supplemental Material [40]. The last column indicates which instrument has been used to measured each line with the following: (a) NIFS spectrograph, (b) IRCS spectrograph, (c) NIRSPEC order34, (d) NIRSPEC order35.

14Si ti NaNa 22Ti	Lower		Upper		۱Å] ا	k_{σ}	instrument
	3s ² 3p4p 4s 3d ³ 4s	${}^{1}D_{2}$ ${}^{2}S_{1/2}$ ${}^{5}P_{2}$	3s ² 3p5s 4p 3d ² 4s4p	${}^{i}p_{1}^{\mu}$ ${}^{i}p_{1/2}^{\mu}$ ${}^{i}D_{2}^{\mu}$	21 360.027 22 089.728 22 238.911	0.013(9) 0.004(2) -0.34(10)	a a,b a
21 Ti 9 Y 20 Ca 21 Se 22 Ti 22 Ti 22 Ti 21 Se	$3d^{3}4s$ $4d^{2}5s$ 4s4d $3d^{2}4s$ $3d^{6}4s^{2}$ $3d^{9}4s$ $3d^{9}4s$ $3d^{2}4s$	${}^{5}P_{2}$ ${}^{4}F_{7/2}$ ${}^{5}D_{1}$ ${}^{4}F_{3/2}$ ${}^{5}D_{2}$ ${}^{5}P_{1}$ ${}^{4}F_{5/2}$	3d ² 4s4p 4d5s5p 4s4f 3d4s4p 3d ⁶ 4s4p 3d ² 4s4p 3d ² 4s4p 3d4s4p	${}^{5}D_{1}^{\nu}$ ${}^{4}F_{1/2}^{\nu}$ ${}^{3}F_{1}^{\nu}$ ${}^{2}D_{1/2}^{\nu}$ ${}^{7}P_{1}^{\nu}$ ${}^{5}D_{1}^{\nu}$ ${}^{5}D_{1}^{\nu}$ ${}^{5}D_{1}^{\nu}$ ${}^{5}D_{1}^{\nu}$ ${}^{5}D_{1}^{\nu}$	22 450.025 22 549.938 22 614.115 21 848.743 21 857.345 21 903.353 22 010.501 22 030.179	$\begin{array}{c} -0.37(10)\\ -0.88(6)\\ -0.03(1)\\ -0.23(3)\\ 0.56(28)\\ -0.30(10)\\ -0.31(9)\\ -0.25(4) \end{array}$	c c b,d d b,d b,d
21Sc 11Na	3d ² 4s 4s	${}^{4}F_{9/2}$ ${}^{2}S_{1/2}$	$\frac{3d4s4p}{4p}$	${}^{4}D^{\nu}_{7/7}$ ${}^{1}P^{\nu}_{7/2}$	22 058.003 22 062.485	-0.29(4) 0.007(2)	d b,d

• Hees, Do, Roberts, Ghez et al. Phys. Rev. Lett. 124, 081101 (2020).

Result: accurate k for many systems

TABLE I. Atomic properties of the absorption lines used in this analysis. The wavelengths λ are experimental
values reported in [46]. The sensitivity to the fine structure constant ka is computed from ab initio calculation using
the AMBIT software [45], see the discussion in Sec. I from the Supplemental Material [40]. The last column indicates
which instrument has been used to measured each line with the following: (a) NIFS spectrograph, (b) IRCS
spectrograph, (c) NIRSPEC order34, (d) NIRSPEC order35.

I4Si 11NaNa 22Ti	Lower		Upper		۱[Å] ا	k_{σ}	instrument
	3s ² 3p4p 4s 3d ³ 4s	${}^{1}D_{2}$ ${}^{2}S_{1/2}$ ${}^{5}P_{2}$	3s ² 3p5s 4p 3d ² 4s4p	${}^{i}p_{1}^{\mu}$ ${}^{i}p_{1/2}^{\mu}$ ${}^{i}D_{2}^{\mu}$	21 360.027 22 089.728 22 238.911	0.013(9) 0.004(2) -0.34(10)	a a,b a
22Ti 9Y 20Cn 21Se 22Ti 22Ti 22Ti 22Ti 21Se 21Se	$3d^{3}4s$ $4d^{2}5s$ 4s4d $3d^{2}4s$ $3d^{6}4s^{2}$ $3d^{3}4s$ $3d^{3}4s$ $3d^{2}4s$ $3d^{2}4s$	${}^{5}p_{2}$ ${}^{4}F_{3/2}$ ${}^{5}D_{1}$ ${}^{4}F_{3/2}$ ${}^{3}D_{3}$ ${}^{5}p_{2}$ ${}^{5}p_{1}$ ${}^{4}F_{5/2}$ ${}^{4}F_{5/2}$ ${}^{4}F_{9/2}$	3d ² 4s4p 4d5s5p 4s4f 3d4s4p 3d ⁶ 4s4p 3d ² 4s4p 3d ² 4s4p 3d4s4p 3d4s4p	${}^{5}D_{1}^{\nu}$ ${}^{4}F_{1/2}^{\nu}$ ${}^{5}F_{1}^{\nu}$ ${}^{5}D_{1/2}^{\nu}$ ${}^{5}D_{3}^{\nu}$ ${}^{5}D_{2}^{\nu}$ ${}^{5}D_{3/2}^{\nu}$ ${}^{4}D_{3/2}^{\nu}$	22 450.025 22 549.938 22 614.115 21 848.743 21 857.345 21 903.353 22 010.501 22 030.179 22 058.003	$\begin{array}{c} -0.37(10)\\ -0.88(6)\\ -0.03(1)\\ -0.23(3)\\ 0.56(28)\\ -0.30(10)\\ -0.31(9)\\ -0.25(4)\\ -0.29(4)\end{array}$	c c b,d b,d b,d b,d d
11Na	4.8	${}^{2}S_{1/2}$	4p	${}^{2}P_{3/2}^{o}$	22 062 485	0.007(2)	b,d

• Hees, Do, Roberts, Ghez et al. Phys. Rev. Lett. 124, 081101 (2020). Side result:

- Possibly most accurate calculation to date of 4-valent Si
- High accuracy calculations of notoriously difficult 8-valent Fe
- $\, \bullet \,$ Made possible by efficient calculation scheme in AMBiT/CI+MBPT

Fundamental Physics with the Super-massive black hole

ESA / C. Carreau

Observing super-massive black hole

- with UCLA Galactic Centre Group
 - Observations led by Tuan Do
 - Andrea Ghez: Awarded 2020 Nobel prize for discovery of black hole
- Keck telescope in Hawaii
- Motion of ${\sim}1000$ stars tracked
- Precise spectroscopy for many stars

Observing super-massive black hole

with UCLA Galactic Centre Group

- Observations led by Tuan Do
- Andrea Ghez: Awarded 2020 Nobel prize for discovery of black hole
- Keck telescope in Hawaii
- Motion of ${\sim}1000$ stars tracked
- Precise spectroscopy for many stars

- Extreme environment: ideal candidate
- High gravitational potential
- Possibly large concentration of DM
- Could this affect fundamental constants?

Search for variation in α close to Black Hole at Galactic Centre

Spectroscopy in high gravity: initial search, existing data

- Hundreds of transitions observed: require clear extraction
- Identified 15 suitable transitions in 6 stars
- Compute K sensitivity coefficients
- Fit for red-shift and variation in α simultaneously

• Hees, Do, Roberts, Ghez et al. Phys. Rev. Lett. 124, 081101 (2020).

B. M. Roberts (UQ

Analysis and Results

• Fit for red-shift and variation in α simultaneously

Analysis and Results

• Fit for red-shift and variation in α simultaneously

$$\frac{\Delta\lambda}{\lambda} = \frac{\overbrace{\lambda(z,\alpha)}^{\text{Observed}} - \overbrace{\lambda(z=0,\alpha_0)}^{\text{Earth value}}}{\lambda(z=0,\alpha_0)} = \underbrace{\overbrace{z}^{\text{red-shift}}}_{sensitivity} - \underbrace{\underset{\alpha}{\text{K}}}_{sensitivity} (1+z) \underbrace{\frac{\Delta\alpha}{\Delta\alpha}}_{\alpha}$$

No significant deviation from zero:

$$rac{\Deltalpha}{lpha_0} = (1.0\pm5.8) imes10^{-6}$$

Constraints on post-GR theories

• Can constrain specific models (no deviation from GR):

$$\frac{\Delta lpha}{lpha_0} = eta rac{\Delta U}{c^2} \implies eta = 3.6 \pm 12$$

- 6 order of magnitude less stringent that atomic clocks
- 1 order of magnitude less stringent than the white dwarf
- But for the first time around a BH
- And: Current: incidental data
- $\bullet \implies$ several orders-of-magnitude improvement in future

- Hees, Do, Roberts, Ghez et al. Phys. Rev. Lett. 124, 081101 (2020).
- Ashby, Parker, Patla, Nat. Phys. 14, 822 (2018).
- Berengut *et al.* Phys. Rev. Lett. **111**, 010801 (2013); Hu *et al.*, Mon. Not. R. Astron. Soc. (2020). B. M. Roberts (UQ)

Improved spectroscopy: better resolution

- Improved spectroscopy: better resolution
- Many more stars and lines: improved statistics (from 15)

- Improved spectroscopy: better resolution
- Many more stars and lines: improved statistics (from 15)
- Hope: more favourable transitions (larger sensitivity K)

- Improved spectroscopy: better resolution
- Many more stars and lines: improved statistics (from 15)
- Hope: more favourable transitions (larger sensitivity K)
- Closer to the Black Hole (larger $\Delta U)$ sensitivity to eta

- Improved spectroscopy: better resolution
- Many more stars and lines: improved statistics (from 15)
- Hope: more favourable transitions (larger sensitivity K)
- Closer to the Black Hole (larger ΔU) sensitivity to eta
- Potential for several order-of-magnitude improvement

- Observed wavelengths 15 atomic lines in 6 old-type stars
- Compute sensitivity to $\delta \alpha$
- Constrain $\delta lpha$ and $\delta lpha \propto U$
- First time around a black hole
- Demonstrate new ways Galactic Center can be used to probe fundamental physics.

Upcoming improvements

 Potential for several order-of-magnitude improvement with dedicated search

ethantweedie.com/

• Hees, Do, Roberts, Ghez *et al.* Phys. Rev. Lett. 124, 081101 (2020). [arXiv:2002.11567]