# Study of electric dipole amplitudes for alkali-like atoms and implications for atomic parity violation

Benjamin M. Roberts

Carter J. Fairhall, Jacinda S. M. Ginges

University of Queensland, Australia

arXiv:2211.11134

30 November 2022

# High-precision study of E1 transitions

#### **High-precision calculations**

- E1 amplitudes for s, p, d transitions
- $\bullet\,$  K, Ca^+, Rb, Sr^+, Cs, Ba^+, Fr, Ra^+ (and Li, Be^+, Na, Mg^+)
- 14 E1 transitions each well over 100

#### **High-precision calculations**

- 46 high-precision experimental amplitudes
  - Also compiled large number other theory calculations
- Allows statistical analysis
- Test theory and test uncertainty method

#### Motivation

- Tests of atomic theory for atomic parity violation
- Recent high-precision measurements in alkali and alkali-likes
- Development of atomic clocks

### Motivation: PNC

#### **Atomic Parity Violation**

- Currently: theory-limited
- PNC chasing  ${\sim}0.1\%$  accuracy
- Need accurate calculations, AND:
- Crucial to confidently determine theoretical accuracy
- Jens Erler talk: currently an issue!



### Motivation: Probing wavefunctions



See: Jacinda's talk re: hyperfine

### Motivation: 6S - 7S vector transition polarisability, $\beta$

#### Stark interference: - See Dan Elliott's talk!



 $Im(A_{PNC})/\beta_{stark} = 1.5935(56) \, mV/cm$ 

Wood et al., Science 275, 1759 (1997).

B. M. Roberts (UQ, Australia)

## Motivation: 6S - 7S vector transition polarisability, $\beta$

- Currently 2.8 $\sigma$  discrepancy between  $\beta$  derived via two methods
- Both methods should be highly accurate
- Talks by Dan Elliott and Andrei Derevianko



All come from single experiment: \*New  $\alpha/\beta$  measurement planned @ Perdue – Elliott

- $\alpha/\beta = 9.905(11)$  Cho, Wood, Bennett, Roberts, Wieman Phys. Rev. A 55, 1007 (1997)
- $M1_{hf}/\beta = -5.6195(91)$  V/cm Bennett, Wieman Phys. Rev. Lett. 82, 2484 (1999)

# Motivation: $\beta$ (references)

Measurements:

- $M1_{hf}/\beta = -5.6195(91)$  V/cm Bennett, Wieman Phys. Rev. Lett. **82**, 2484 (1999)
- $\alpha/\beta = 9.905(11)$  Cho, Wood, Bennett, J. Roberts, Wieman Phys. Rev. A 55, 1007 (1997)

Interpretations:

Calculation of  $\alpha$  (theory + expt.)

- Safronova et al., PRA60, 4476 (1999)
- Vasilyev et al., PRA66, 020101 (2002)
- Dzuba et al., PRD66, 076013 (2002)
- Toh et al., PRL123, 073002 (2019)
- Sahoo et al., PRD103, 111303 (2021)

Ab-initio calculation of  $M1_{\rm hf}$ 

• Derevianko et al., PRA60, 1741 (1999)

Semi-empirical calculation of  $M1_{
m hf}$ 

- Bennett, Weiman, PRL82, 073002 ('99); Bouchiat Piketty JPB49, 1851 ('88)
- Dzuba, Flambaum, PRA62, 052101 (2000)

B. M. Roberts (UQ, Australia)

# Motivation: QED

- QED corrections to to E1 amplitudes
- Known to be important for very light atoms
- Precision for heavy single-valence systems:
  - Important here also!



### **QED Corrections**

- Self-energy: non-local + difficult
- Rigorous QED in simplified atomic potentials
- OR, Approximate QED with many-body atomic physics

### Radiative potential method

- Approximates self-energy with local potential
- Vertex cannot be included
- (Uehling vertex simple to calculate: completely negligible)
- Flambaum, Ginges, PRA72, 052115 (2005)
- Talks by Victor Flambaum, Jacinda Ginges

### Motivation: QED + many-body

| Atom          | $ r_{ab} $ | This work |        | Sapirstein and Cheng [7] |       |                     |  |
|---------------|------------|-----------|--------|--------------------------|-------|---------------------|--|
|               |            | PO(s)     | PO(p)  | PO(s)                    | PO(p) | vertex <sup>a</sup> |  |
| Na            | 4.588      | 0.032     | 0.000  | 0.031                    | 0.001 | -0.015              |  |
| K             | 5.681      | 0.069     | 0.000  | 0.067                    | 0.000 | -0.003              |  |
| Rb            | 6.009      | 0.190     | 0.000  | 0.182                    | 0.000 | 0.028               |  |
| $\mathbf{Cs}$ | 6.585      | 0.334     | -0.001 | 0.326                    | 0.000 | -0.065              |  |
| Fr            | 6.511      | 0.777     | -0.014 | 0.787                    | 0.202 | -0.060              |  |

<sup>a</sup> Vertex and other corrections. A full breakdown of these contributions is given in Table II of Ref. [7].

- Many-body effects significantly larger than disagreement
  - In particular: relaxation
- $\sim$ 20% for *s*-*p*; Changes sign and order-of-magnitude for *p*-*d*
- QED correction to s-states in core
- PhD student: Carter Fairhall [to be published soon]

Sapirstein, Cheng, PRA71, 022503 (2005); BMR, Dzuba, Flambaum, PRA87, 054502 (2013).

## $\mathsf{Caveat}/\mathsf{Warning}$

- Method works well for energies and E1 amplitudes
- However: not always appropriate
- Missed (vertex) effects can be large and dominate
- e.g., Hyperfine constant, PNC matrix elements
- Incorrect sign and order-of-magnitude

- Flambaum, Ginges, PRA72, 052115 (2005)
- BMR, Dzuba, Flambaum, PRA87, 054502 (2013)
- BMR, Ginges, PRD105, 018301 (2022)

## Motivation: QED

Several cases: QED *larger* than discrepancy between theory + experiment(!)

| а                         | Ь          | $\delta_{QED}$ | Theory | Expt.                  | Δ       | $\Delta(\%)$      |  |  |  |
|---------------------------|------------|----------------|--------|------------------------|---------|-------------------|--|--|--|
|                           | Rb         |                |        |                        |         |                   |  |  |  |
| $5s_{1/2}$                | $5p_{1/2}$ | 0.0019         | 4.2381 | $4.231(3)^1$           | 0.007   | 0.1               |  |  |  |
|                           | $6p_{1/2}$ | -0.0012        | 0.3232 | 0.3235(9) <sup>2</sup> | -0.0003 | $-0.1^{\dagger}$  |  |  |  |
|                           | $5p_{3/2}$ | 0.0027         | 5.9818 | $5.978(5)^1$           | 0.004   | $0.06^{\dagger}$  |  |  |  |
|                           | $6p_{3/2}$ | -0.0015        | 0.5256 | $0.5230(8)^2$          | 0.0026  | 0.5               |  |  |  |
| Cs                        |            |                |        |                        |         |                   |  |  |  |
| 6 <i>s</i> <sub>1/2</sub> | $6p_{1/2}$ | 0.0034         | 4.5052 | $4.5057(16)^3$         | -0.0005 | -0.01†            |  |  |  |
| ,                         | $7p_{1/2}$ | -0.0023        | 0.2776 | $0.2781(4)^4$          | -0.0005 | -0.2              |  |  |  |
|                           | $6p_{3/2}$ | 0.0051         | 6.3402 | $6.3398(22)^3$         | 0.0004  | $0.01^{\dagger}$  |  |  |  |
|                           | $7p_{3/2}$ | -0.0026        | 0.5741 | $0.5742(6)^4$          | -0.0001 | $-0.01^{\dagger}$ |  |  |  |

#### • PhD student: Carter Fairhall

- 1. Volz and Schmoranzer, Phys. Scr. T65, 48 (1996).
- 2. Herold, Vaidya, Li, Rolston, Porto, Safronova Phys. Rev. Lett. 109, 243003 (2012)
- 3. Toh, Damitz, Tanner, Johnson, Elliott Phys. Rev. Lett. 123, 073002 (2019)
- 4. Damitz, Toh, Putney, Tanner, Elliott Phys. Rev. A 99, 062510 (2019)

# Require: Robust method for theoretical uncertainties

#### Extremely important

- Robust method for reliably determining theoretical uncertainties
- 0.5% 
  ightarrow 0.1% level: requires proof
- Proving accuracy at this level is not simple task

#### Benchmarking atomic theory

- Test  $h_{\rm PV}$  with hyperfine
  - Nuclear uncertainties 0.5%-0.2% level
  - Jacinda's talk
- Test E1
  - Limited by experiment (in some cases)
- Effects non-linear in  $\boldsymbol{d}$  and  $h_{\mathrm{PV}}$  ??
- Even numerical errors significant at this level



## Outline of method



#### Vladimir Dzuba talk

• Dzuba, Flambaum, Silvestrov, Sushkov, Physics Letters A 131, 461 (1988); Dzuba, Flambaum, Sushkov, Physics Letters A 140, 493

(1989); Dzuba, Flambaum, Kraftmakher, Sushkov, Physics Letters A 142, 373 (1989).

### Beyond second-order

### **Coupled cluster:**

- Expand wavefunction to fixed (finite) order of excitations from reference
- Solve iteratively for expansion coefficients: all-orders (in Coulomb interaction)
  - Talks by Sahoo, Chakraborty, Derevianko

#### Feynman technique:

- Dominating series of screening diagrams summed exactly to all-orders
- all-orders in screening + hole-particle (double, triple, quadupole etc. excitations)
- No basis required, instead integration over frequencies
- Highly accurate, highly computationally efficient
  - Talks by Dzuba, Flambaum

• Dzuba, Flambaum, Silvestrov, Sushkov, Physics Letters A **131**, 461 (1988); Dzuba, Flambaum, Sushkov, Physics Letters A **140**, 493 (1989); Dzuba, Flambaum, Kraftmakher, Sushkov, Physics Letters A **142**, 373 (1989).

Screening + Hole-particle + chaining

$$\cdots + \cdots + \cdots + \cdots + \cdots + \cdots + \cdots$$

$$Q^{\text{scr.}}(\omega) = Q + Q(-i\Pi Q) + Q(-i\Pi Q)^2 + \dots$$
$$= Q \left[1 + i\Pi(\omega)\right]^{-1}$$





#### See also Vladimir Dzuba talk

B. M. Roberts (UQ, Australia)

14/31

# SR + Norm (non-Brueckner)



#### Structure Radiation:

- Non-separable  $\Sigma$  and  $h_{\mathrm{external}}$
- $\circ$  < 1%

#### Normalisation:

- Change in normalisation of many-body states
- Goldstone technique (direct diagram calculation)
- Only computationally intensive part (still  $\sim$  minutes)
- Easily saturate basis

Johnson, Idrees, Sapirstein, PRA35, 3218 (1987); Dzuba, Flambaum, Silvestrov, Sushkov, J. Phys. B 20, 1399 (1987)

## Missing: ladder diagrams



Similar to: Dzuba, PRA 78, 042502 (2008)

# Ladder diagrams [preliminary]

| Level                     | RHF   | $\delta \Sigma^{(2)}$ | $\delta \Sigma^{(\infty)}$ | Breit | QED   | Final | Expt. | $\Delta(\%)$ |
|---------------------------|-------|-----------------------|----------------------------|-------|-------|-------|-------|--------------|
| 6 <i>s</i> <sub>1/2</sub> | 27954 | 4458                  | -998                       | 2.8   | -21.5 | 31395 | 31406 | -0.04%       |
| $6p_{1/2}$                | 18791 | 1747                  | -294                       | -7.4  | 1.1   | 20236 | 20228 | 0.04%        |
| $6p_{3/2}$                | 18389 | 1550                  | -258                       | -0.7  | 0.1   | 19680 | 19674 | 0.03%        |
| $5d_{3/2}$                | 14138 | 3424                  | -458                       | 25.8  | 5.6   | 17136 | 16907 | 1%           |
| $5d_{5/2}$                | 14163 | 3240                  | -402                       | 30.3  | 4.7   | 17035 | 16810 | 1%           |

Table: Ab initio calculations of ionization energies  $(cm^{-1})$  for the lowest states of Cs.

Table: Ladder corrections to the lowest *d*-state energies of Cs, showing the lowest (third-order)  $\delta L^{(3)}$  and subsequent all-order  $\delta L^{(\infty)}$  corrections (including chaining). The column  $\Sigma$  is the all-orders correlation potential result including Breit and QED

| Level      | Expt. | Σ     | $\Delta(\%)$ | $\delta L^{(3)}$ | $\delta L^{(\infty)}$ | Total | $\Delta(\%)$ |
|------------|-------|-------|--------------|------------------|-----------------------|-------|--------------|
| $5d_{3/2}$ | 16907 | 17136 | 1%           | -173             | -60                   | 16903 | -0.03%       |
| $5d_{5/2}$ | 16810 | 17035 | 1%           | -175             | -64                   | 16796 | -0.08%       |

Similar to: Dzuba, PRA 78, 042502 (2008)

### Estimate higher-order diagrams + uncertainty

Re-scale  $\boldsymbol{\Sigma}$  to match experimental energies:

 $\Sigma \to \lambda \Sigma$ 

- $\lambda \approx 1$
- Enter at  $\sim 0.05\%$  level (for *s*-*p*)
- $\sim 0.5\%$  level (for *p*-*d*)
- Must account for QED, Breit (no double-counting)

#### Estimate uncertainty:

- Compare  $\lambda \Sigma^{(2)}$ ,  $\Sigma^{(\infty)}$ ,  $\lambda \Sigma^{(\infty)}$
- ${\sim}30\%$  From Breit, QED, SR+Norm
- $\bullet$  Uncertainty: always larger than  $\delta\lambda$  semi-empirical correction

## Overview: E1 calculations

#### Consider large number of transitions

- K, Ca<sup>+</sup>, Rb, Sr<sup>+</sup>, Cs, Ba<sup>+</sup>, Fr, Ra<sup>+</sup>
- Exact same method + parameters
- 14 E1 transitions each over 100
- 46 high-precision experimental amplitudes
- Allows statistical analysis:
  - Thorough test of the theory accuracy
  - Test of method for uncertainty estimation

- Also did Li, Be<sup>+</sup>, Na, Mg<sup>+</sup>
- Agreement (unsurprisingly) excellent, not included in analysis (too simple)



# Results: Overview

### Compared with 46 high-precision experiment

- All but 2 (or 3) within  $1\sigma$ 
  - Combined theory+experiment errors
  - Dominated by theory (mostly)
- Better than statistically expected
  - Conservative uncertainties!
- pprox Half within experimental uncertainties!
  - Require experimental improvements





• Cs case (single transition): return later



• Largely agree, though large spread in theory - some disagree very significantly

- Highlights importance of robust theory uncertainty estimate
- Largest disagreement:  $6s-6p_{3/2}$  (2 $\sigma$ )
- ullet While single  $2\sigma$  in  $\sim$  46 cases is expected, we think this may be experimental issue

Reduced matrix elements  $|\langle a||d||b\rangle|$  (ea<sub>0</sub>) – See arXiv:2211.11134 for full references

### Ba<sup>+</sup>: Ratio

Also  $2\sigma$  tension in ratio

$$\frac{|\langle 6s||d||6p_{3/2}\rangle|}{|\langle 6s||d||6p_{1/2}\rangle|} = \begin{cases} 1.4116(2) & \text{Theory} \\ 1.4140(12) & \text{Expt. [Woods et al, PRA (2010)].} \end{cases}$$

c.f. Rb (for example) – Ba<sup>+</sup> difference is 100x larger!

$$\frac{|\langle 5s||d||5p_{3/2}\rangle|}{|\langle 5s||d||5p_{1/2}\rangle|} = \begin{cases} 1.41141(9) & \text{Theory} \\ 1.41144(1) & \text{Expt. [Leonard et al, PRA (2015)].} \end{cases}$$

Correlations cancel. Non-rel limit:  $\sqrt{2} = 1.41421$ 

Other theory\*:

- 1.4109(2) Iskrenova-Tchoukova et al. (2008)
- 1.412 Dzuba et al. (2001)
- 1.40 Sahoo et al. (2006)
- 1.411 Kaur et al. (2021),
- 1.412 Porsev et al. (2021)

(1)

(2)



- Other discrepancy: Fr 7s-7 $p_{1/2}$  1.2 $\sigma$  within expectations
- Large spread in theory values, limited experiment
- Based on comparison for other systems: expect ours to be most accurate

Reduced matrix elements  $|\langle a | | d | | b \rangle|$  (ea<sub>0</sub>) – See arXiv:2211.11134 for full references

### "Light" atoms: excellent agreement (no surprise)



Again, some theory strongly disagrees: highlights need to correct uncertainty analysis

Reduced matrix elements  $|\langle a | | d | | b \rangle|$  (ea<sub>0</sub>) – See arXiv:2211.11134 for full references

```
B. M. Roberts (UQ, Australia)
```

### Results: Cs



- Most precise experiment is for Cs:
- Excellent agreement between theory and experiment for 6s-np
- Even for extremely small (6s-7p), small due to cancellations

Reduced matrix elements  $|\langle a||d||b\rangle|$  (ea<sub>0</sub>) – See arXiv:2211.11134 for full references

25/31

### Results: Cs d-states



- New lifetime measurement
- Resolves discrepancy between theory and experiment (favour of theory)
- Much better agreement than expected for CP method
  - Dzuba, Flambaum, Ginges, PRA63, 062101 (2001).
  - Claimed 5% uncertainty for *p*-*d*: actually 0.5%!
- Highlights need for roust theory uncertainties

Pucher, Schneeweiss, Rauschenbeutel, Dareau, Phys. Rev. A 101, 042510 (2020).

### Important case: Cs 7s-7p

#### Updated value

- Extracted from 6s 7s stark shift [1]
- New value [2] shifts by  $\sim 1.1\sigma$  cf. previous [3]
- "only" 0.2% shift
- Problem for uncertainty 0.3% / goal of 0.1%!
- Bennett, J. L. Roberts, Wieman, PRA**59**, R16(R) (1999)
   Toh, Damitz, Tanner, Johnson, Elliott PRL**123**, 073002 '19
   Safronova, Johnson, Derevianko, PRA**60**, 4476 (1999)



$$\begin{split} E_{\rm PNC} = & \frac{\langle 7s|d_z|6p_{1/2}\rangle\langle 6p_{1/2}|h_{\rm W}|6s\rangle}{E_{6s} - E_{6p_{1/2}}} + \frac{\langle 7s|h_{\rm W}|6p_{1/2}\rangle\langle 6p_{1/2}|d_z|6s\rangle}{E_{7s} - E_{6p_{1/2}}} + \frac{\langle 7s|d_z|7p_{1/2}\rangle\langle 7p_{1/2}|h_{\rm W}|6s\rangle}{E_{6s} - E_{7p_{1/2}}} + \dots \\ \approx & -1.91 + 1.49 + 1.35 + \mathcal{O}(10^{-1}) \end{split}$$

 $\bullet$  Any shift in this ME leads directly to shift in  ${\it E}_{\rm PNC}$ 

### Important case: Cs 7s-7p

#### Impact on PNC analysis

- $\sim 1.1\sigma$  disagreement; "only" 0.2% shift
- Compared to theory: actually  $\sim 0.5\%$  error!
- $\bullet\,$  But leads directly to 0.5% shift in  $E_{\rm PNC}$ 
  - Nearly 2x claimed  $E_{\rm PNC}$  uncertainty from single term
- Old value used in all uncertainty analyses!
- (Doesn't impact  $\beta$  issue)



- Issue with theory for 7s state?
- Issue with DC stark shift experiment?

### Results: Extract new E1

| Transition              | $ \langle a  d  b angle $      | Method          | Transition              | $ \langle a  d  b angle $ | Method       |
|-------------------------|--------------------------------|-----------------|-------------------------|---------------------------|--------------|
|                         | Cs                             |                 |                         | $Ca^+$                    |              |
| $5d_{5/2}$ - $5p_{3/2}$ | 9.650(18)                      | au              | $3d_{3/2}-4p_{1/2}$     | 2.447(4)                  | E1+Ratio     |
| $5d_{3/2}-6p_{1/2}$     | $7.06(1)_{ m ex}(4)_{ m th}$   | au + Ratio      | , ,                     | $Sr^+$                    |              |
| $5d_{3/2}-6p_{3/2}$     | $3.182(6)_{ m ex}(17)_{ m th}$ | au+Ratio        | $5s_{1/2}$ - $5p_{1/2}$ | 3.076(24)                 | au+Branching |
| $5d_{3/2} - 7p_{3/2}$   | 0.795(4)                       | au + E1 + Ratio | $5s_{1/2}-5p_{3/2}$     | 4.360(23)                 | au+Branching |
| , ,                     | 0.799(5)                       | au+E1+Ratio     | $4d_{3/2}-5p_{1/2}$     | 3.093(15)                 | au+Branching |
| $5d_{5/2}$ - $7p_{3/2}$ | 2.481(11)                      | au+E1+Ratio     | $4d_{3/2}-5p_{3/2}$     | 1.378(34)                 | au+Branching |
| , ,                     | 2.493(15)                      | au+E1+Ratio     | $4d_{5/2}-5p_{3/2}$     | 4.175(22)                 | au+Branching |
|                         | Fr                             |                 | , ,                     | $Ra^+$                    |              |
| $8s_{1/2}$ -7 $p_{1/2}$ | 4.234(20)                      | au+Ratio        | $7s_{1/2}$ - $7p_{1/2}$ | 3.229(9)                  | E1 + Ratio   |
| $8s_{1/2}-7p_{3/2}$     | 7.460(33)                      | au+Ratio        | $6d_{3/2} - 7p_{1/2}$   | 3.564(27)                 | E1+Ratio     |

#### See arXiv:2211.11134 for references

### Summary

#### **High-precision calculations**

- E1 amplitudes for *s*, *p*, *d* transitions
- K, Ca<sup>+</sup>, Rb, Sr<sup>+</sup>, Cs, Ba<sup>+</sup>, Fr, Ra<sup>+</sup>

#### Uncertainty

- Compare to 46 high-precision experimental amplitudes
- Better than expected agreement: conservative uncertainty
- Half lie within experimental errors
- $\bullet\,$  Many at 0.1% level or better: demonstrate robust uncertainty method

#### Also

• Extract several new E1 amplitudes from existing experiment

# Upcoming postdoc position - UQ, Brisbane



- Funding for postdoc
- Know a great candidate?
- Not advertised yet, but put people in touch
- j.ginges @ uq.edu.au, b.roberts @ uq.edu.au

