#### Atomic Clocks:

Precision time-keeping and fundamental physics

Benjamin M. Roberts

University of Queensland, Australia

18 July 2022

# A clock is a thing that ticks

#### Periodic predictable motion: count ticks

- Earth's orbit/rotation
- Flowing water/sand
- Swinging pendulum
- Oscillating electromagnetic wave



Getty





# Precision timing: long history of fundamental physics/astronomy

#### 1657: Huygens designs pendulum clock

- $\, \bullet \,$  Accurate to  $\sim 15 \, {\rm s/day}$
- Works on solid physics principal:  $T\propto \sqrt{L}$

#### 1672: Jean Richer expedition to French Giana

- Observe Mars near equator measure scale of solar system
- Failed: pendulum clocks ran slow by 2 min/day

#### 1687: Newton's Principia (15 years post Richer)

Explained Richer's measurement: law of gravitation

#### 1676: Rømer calculates speed of light

- Observe eclipse of Jupiter's moons
- $\, \bullet \,$  Required accuracy of  $\sim 30 \, {\rm s/day}$







## Universal frequency standard

- Pendulums (+all kinematic clocks): depend on materials, location, specifics
- Earth rotation: unstable  ${\sim}5$  ms/day (10<sup>-7</sup>)

Lord Kelvin in 1879 (attributed to Maxwell):

The recent discoveries due to the kinetic theory of gases and to spectrum analysis indicate to us natural standard pieces of matter such as **atoms of hydrogen or sodium**, ready made in infinite numbers, all absolutely alike in every physical property. The time of vibration of a sodium particle corresponding to any one of its modes of vibration is known to be absolutely independent of its position in the Universe...

Thomson, W., and P. G. Tait, 1879, Elements of Natural Philosophy (Cambridge University Press, Cambridge, England).

# Atomic frequency standard

- Atoms: absorb/emit specific frequencies
- Universally constant









NIST, Geoffrey Wheeler

## Atomic clocks: basic principal

#### "Thing that ticks": external oscillator

- Microwave cavity
- Electric field of laser light (optical clocks)
- Even quartz oscillator (e.g., GPS clocks)
- Typically: better short-term stability than atomic transition
- But: depend on external conditions

#### Oscillator kept on resonance with atomic transition

- Monitor atomic transition
- Send correction signal: adjust oscillator



Wcislo 2016



Ye, UC Bolder

# Clock operation: some considerations

- 0. Cooling/trapping/confining
- 1. State preparation: Ensure atoms in state |A
  angle
- 2. Interrogation: excite clock transition  $|A\rangle \rightarrow |B\rangle$
- 3. Detection: measure population of  $|B\rangle$





- Drive clock transition |A
  angle o |B
  angle:  $\omega = \omega_{AB} + \Delta$
- Maximise transition rate,  $\Gamma$ : minimise detuning  $\Delta=0$ 
  - $\delta\Gamma/\delta w$ : maximum near half-maximum
  - absorption/stimulated emission: state preparation
- Observe population of  $|B\rangle$ :  $\propto \Gamma$ 
  - |B
    angle
    ightarrow |C
    angle, observe fluorescence from |C
    angle
  - Shelving/quantum amplification

## Accuracy, precision, stability

- Atomic transition: "perfect" accuracy
- Ultra-stable laser: high precision, poor accuracy
- Accuracy of clock: depends on time-scale
- Averaging time:  $\tau$





DarkEvil/Wikimedia Commons

• If limited by quantum projection noise:



 $\bullet$  This example: Al^+ clock:  $\mathit{f}_{0}\approx 1121.02\,\mathrm{THz}$ 

## Allan deviation: clock precision





JILA

- Optical clock:  $10^{-18} 1 \text{ s} / 100$  Billion yrs
- Earth rotation:  $10^{-7} 1 \,\mathrm{s}$  / year
- Quartz:  $10^{-7} 1 s / year$
- Mechanical watch: 10<sup>-5</sup> 1 s / day

#### Example: Gravitational red-shift

Gravitational red-shift: from General relativity

$$rac{\delta f}{f} = -rac{\delta U}{c^2} \sim 10^{-16} rac{\delta r}{1 \, \mathrm{m}}$$

Easily detectable by modern optical clocks:

$$\frac{\delta f}{f} \sim 10^{-18-19}$$

- Cornerstone of modern geodesy / reference systems
- Gravitational red-shift is one of the biggest systematic which must accounted for in clock comparisons even within the same lab!

Compare to frequency shift of pendulum clock:  $f \propto \sqrt{g/L}$ :

$$\frac{\delta f}{f} = -\frac{\delta r}{r} \sim 10^{-7} \frac{\delta r}{1\,\mathrm{m}}$$

#### **Fundamental Physics**

#### Standard Model + General Relativity

- Extraordinarily successful: however, incomplete
- Quantum gravity, matter–anti-matter asymmetry, dark matter/energy etc.

#### Precision time-keeping as probes of fundamental physics

- Search for evidence of new physics
- Variation of fundamental constants (just a few examples)
- Also: tests of GR, LLI, CPT symmetry stc.

# Variation of Fundamental Constants

- Are the laws of physics the same everywhere/when in the universe
- Atomic energies, and thus frequencies, depend on fundamental constants
- Each transition depends differently on constant: K must be calculated
  - e.g., Fine structure constant: lpha pprox 1/137.036... (strength of electromagnetic force)



## Temporal variation

- Observe multiple clocks over long time periods
- Different sensitivity to lpha,  $\mu=m_e/m_p$

$$egin{array}{l} rac{\delta lpha}{lpha \, \delta t} = -0.2(2) imes 10^{-16} / {
m yr} \ rac{\delta \mu}{\mu \, \delta t} = -0.5(1.6) imes 10^{-16} / {
m yr} \end{array}$$





• Huntemann et al., PRL 113, 210802 (2014)

# Spatial variation: Australian dipole

- Observe spectra from distant stars
- Compare to measurements on Earth





- non-zero gradient ( $\sim 3\sigma$ ) result!
- Over year: earth moves through gradient

 $\delta \alpha / \alpha \sim 10^{-20}$ 

- Near-future clocks: can detect this
- Webb et al., PRL 87, 091301 (2001); 107, 191101 (2011)

## Transient/oscillating variation: dark matter

- $\circ$  Scalar-field DM with,  $m_{\phi} \ll 1\,{
  m eV}$
- $\bullet \ {\sf Self-interaction} \ \Longrightarrow \ {\sf clumps} \ \Longrightarrow \ {\sf transients}$
- Otherwise  $\implies \phi = \phi_0 \sin(m_\phi t) \implies$  oscillating

$$\mathcal{L}_{\rm int} = \pm \frac{\phi^2}{\Lambda_F^2} F^{\mu\nu} F_{\mu\nu} \pm \frac{\phi^2}{\Lambda_f^2} \bar{\psi}_f \psi_f$$

$$\frac{\delta \alpha}{\alpha} = \pm \frac{\phi^2}{\Lambda_F^2} \,, \qquad \frac{\delta m_f}{m_f} = \mp \frac{\phi^2}{\Lambda_f^2}$$

- Derevianko, Pospelov, Nat. Phys. 10, 933 (2014)
- Hees et al., Phys. Rev. Lett. 117, 061301 (2016)
- Savalle, BMR et al., Phys. Rev. Lett. 126, 051301 (2021)





## GPS: 50,000 km DM observatory

- 32 satellite clocks (Rb/Cs)
- $\bullet~\sim 16$  years of high-quality data
- $\, \bullet \,$  Correlated, directional signal  $\, v_g \sim 300 \, {\rm km/s}$
- BMR et al., Nature Comm. 8, 1195 (2017)
- Wcisło et al., Nature Astro. 1, 0009 (2016)





# European fibre-linked optical clock network

- Optical clocks: 10<sup>-16</sup> (GPS: 10<sup>-12</sup>)
- Much less data  $\sim$  hours (GPS: decade)
- Best constraints on  $\sim \mbox{hour-day transient}$  variation of  $\alpha$
- Complement: different parameter space





• BMR et al., New J. Phys. 22, 093010 (2020)

# Extra

## European fibre-linked optical clock network

 $\bullet$  Best constraints on transient variation of  $\alpha$ 



# Clock operation: Microwave fountain clock

- 1. Cooling and/or trapping
- $\bullet\,$  2. State preparation: Ensure atoms in state  $|A\rangle$
- 3. Interrogation: excite clock transition |A
  angle 
  ightarrow |B
  angle
- 4. Detection: measure population of  $|B\rangle$



NIST: nist.gov/news-events/news/1999/12/nist-f1-cesium-fountain-cloc

#### Clock operation: Microwave fountain clock - details



$$|A
angle 
ightarrow c_A |A
angle + c_B |B
angle$$

Detect population of  $|B\rangle$ : maximum fluorescence

Ramsey-Bordé interferometry or the separated oscillating fields method

### Optical vs. microwave clocks





# Clock operation: Typical optical clock

- 1. Cooling and/or trapping
- 2. State preparation: Ensure atoms in state |A
  angle
- 3. Interrogation: excite clock transition |A
  angle 
  ightarrow |B
  angle
- 4. Detection: measure population of  $|B\rangle$





• If limited by quantum projection noise:

$$\sigma_y(\tau) = \frac{\delta f}{f_0 \sqrt{N}} \sqrt{\frac{T_{\text{cycle}}}{\tau}}$$

• This example: Al^+ clock:  $f_0 \approx 1121.02\,\mathrm{THz}$ 

