Dark matter induced atomic ionisation:

Calculations of atomic ionisation cross-sections

Benjamin M. Roberts, Ashlee R. Caddell

University of Queensland, Australia;

University of Melbourne 30 March 2022 Usually:

- High-precision atomic structure theory
- Applications: precision tests of fundamental physics
- Atomic parity violation, search for EDMs, exotic physics signatures in atomic experiments

This talk:

- Dark matter direct detection
- WIMP scattering on atomic electrons
- Modelling of atomic wavefunctions more important than expected

Dark Matter

- Rotation curves + velocity dispersion
- BAOs: Baryon acoustic oscillations
- Gravitational lensing
- Structure formation

What we don't know about dark matter

img: [US Cosmic Visions report, arXiv:1707.04591]

Though many are tightly constrained by observations

- Theoretical: good motivation
- $\,$ $\,$ Experimental: "easy" (conceptually) to detect $m_\chi\gtrsim m_{
 m nucleus}$

WIMP Miracle

- Neutron-like massive particles, only interact via weak force
- * M \sim 100 GeV + weak interaction $\Rightarrow \langle \sigma \nu \rangle \sim 10^{-26}~{\rm cm}^3/{\rm s}$
- $\, \bullet \,$ Observed DM abundance \Rightarrow annihilation: $\langle \sigma \nu \rangle \sim 10^{-26} \ {\rm cm}^3/{\rm s}$
- \bullet Very weak dependence on mass, holds for 1 GeV 10 TeV
- (.....but large portions ruled out already)

Looking for Dark Matter

- Production: Missing energy + resonance searches as colliders **
- Decay: Astrophysics searches for annhilation/decay products
- Scattering: Directly detect DM–SM interactions $\quad \leftarrow \mbox{ This talk }$
- ** Also: DM-mediated processes: atomic physics, fifth-force, EDM searches, atomic parity violation

Duel-Phase Time-Projection Chamber - S1 and S2

[http://www.xenon1t.org/]

Duel-phase (Liquid & Gas) Scintillating liquid Xe

- Scattering event: excitations and ionisations
- De-excitation: prompt photons ("S1" signal)
 PMTs give x, y positions
- Ionised electrons drifted upwards, accelerated through Xe gas: "S2" scintillation – like a neon (xenon) bulb
 - Drift time; re-construct z-position
- Reconstruct $E_{\rm recoil}$ from S1 and/or S2 (S1 better calibrated)

Duel-Phase Time-Projection Chamber - S1 and S2

[XENON100 Collab., Astropart. Phys. 54, 11 (2014)]

- Neutron/ γ /charged particles: Probability of interaction drops quickly with length
- WIMP interactions: very rare:
 ... flat probability
 - I-Xe Vito (only use middle)
 e.g. Xe1T: 3 → 2 tonnes
- Also: Probability of double-scattering is negligible
 - Reject such events (e.g., left)

Time-projection Chamber - S1 and S2

S1 Electron Rec.

• Discrimination of nuclear recoils (WIMPs/ns) from electron recoils (γ s/ β s) S2 S2

 $51_{\rm Nuclear Rec.}$

Time-projection Chamber - S1 and S2

• Also: background can be modelled/measured & rejected

Fig. 14. S1 peaks of a candidate ^{85}Kr event where the second light signal from the γ -ray is delayed by \sim 900 ns.

[XENON100 Collab., Astropart. Phys. 54, 11 (2014)]

Point is: need/want both S1 and S2 to understand events

Limits/exclusions

- Approaching Neutrino "floor"
- (From sun, annual modulation)
- Low-mass substantially less constrained
- Threshold vs. exposure

Lighter WIMPs

- $M_\chi \ll M_{
 m Nuc.}$: cannot cause appreciable nuclear recoil
- But can cause ionisations: assumed that S2 \gg S1
- High background noise in these regime though
- Usually S2-only signal is excluded due to background

- S1 signal thought to be negligible
- In fact, it might be much larger than thought

WIMP-Electron ionisation

- Cause excitations, and ionisations
- q/E: momentum/energy transfer

$$dR = \frac{n_T \rho_{\rm DM}}{m_\chi c^2} \frac{\mathrm{d} \langle \sigma_{njl} v_\chi \rangle}{\mathrm{d}E} \,\mathrm{d}E$$

•Free-electron cross-section, $\bar{\sigma}_e$, and DM form-factor:

$$\begin{split} \hbar q_{\pm} &= m_{\chi} v \pm \sqrt{m_{\chi}^2 v^2 - 2m_{\chi} E} \\ \bullet \text{ Following: Essig, Manalaysay, Mardon, Sorensen, Volansky, Phys.Rev.Lett.109,021301('12).} \end{split}$$

S1

$$R\propto \int_{E_{\rm thresh.}} \frac{{\rm d}\langle \sigma v\rangle}{{\rm d} E}\,{\rm d} E$$

- Low-energy threshold
- (hardware + software)
- Suppressed for electron recoils*
- Detector resolution very important

S2

$$R \propto \int_0 \frac{\mathrm{d}\langle \sigma v \rangle}{\mathrm{d}E} \,\mathrm{d}E$$

- Electrons drifted upwards
- Scintillate in gaseous phase
- Energy agnostic: count electrons
- Secondary electrons

Why S1 thought to be small?

$$q_{\min}=m_{\chi}v-\sqrt{m_{\chi}^2v^2-2m_{\chi}E}$$

WIMP-induce ionisation:

- lpha WIMP: $m_\chi \sim 10\,{
 m GeV}$, $v_\chi \sim 10^{-3}c$
- Energy deposition: $\Delta E \sim ext{keV}$
- $ho \Rightarrow q \sim 1000\,\mathrm{a.u.} = 4\,\mathrm{MeV}$ momentum transfer
- ... very suppressed

Simple Approach:

- Very large q: high-p tail of electron wavefunction: $r \sim q^{-1} \sim 10^{-3} a_B$
- Close to nucleus: s-states (l=0) non-zero $\psi(0)$
- Close to nucleus: Oscillator-like wavefunctions: $\psi \sim {\cal A} e^{-eta r^2}$

$$\langle f|e^{-im{q}\cdotm{r}}|i
angle\propto e^{-q^2/8eta}$$

Coulomb wave-functions:

Smooth function: $\langle f | e^{-i \boldsymbol{q} \cdot \boldsymbol{r}} | i \rangle \propto e^{-q^2/8\beta}$

Non-relativistic Coulomb Case:

$$\psi \sim Ar' \left[1 - rac{Z}{I+1}r + \ldots
ight]$$

- Coulomb wavefunctions contain a cusp, strongest l = 0:
- Lowest-order term: $\sim \int r^{l+l'+2} j_L(qr) \; dr$: Identically Zero
- Next term: $\sim \int r^{l+l'+3} j_L(qr) \; dr \propto Z \; q^{-(l+l'+4)}$

•
$$d\sigma \sim q^{-8}$$
 — s -waves dominate

Eighth power is still eighth power but better than exponential

• BMR, V. Flambaum, and G. Gribakin, Phys. Rev. Lett. 116, 023201 (2016).

Dirac wave-functions

 $\kappa =$

Relativistic Case is different:

$$\psi \sim Ar^{\gamma-1} \left[\gamma - \kappa + Br + \ldots\right]$$
 : $\gamma = \sqrt{\kappa^2 - (Z\alpha)^2} \approx 1 - (Z\alpha)^2$
-1 for *s*-states, 1 for $p_{1/2}$

• Lowest-order term: $\sim \int r^{\gamma+\gamma'} j_L(qr) dr$: Non-Zero! • $s, p_{1/2}$ -waves: $d\sigma \sim q^{-6+2(Z\alpha)^2} \simeq q^{-5.7...}$ for Xe, I.

$$e^{-q^2} o q^{-8} o q^{-6} o q^{-6+2(Zlpha^2)} pprox q^{-5.7..}$$

• Orders of magnitude enhancement

• BMR, V. Flambaum, and G. Gribakin, Phys. Rev. Lett. 116, 023201 (2016).

Outgoing electron wavefunction: Sommerfeld enhancement

For large p ($|p| = \sqrt{2m_e\varepsilon}$), plane waves should be OK?

$$\langle m{r} | m{
ho}
angle = e^{im{
ho}\cdotm{r}/\hbar}, \qquad \qquad \int rac{d^3m{
ho}}{(2\pi\hbar)^3} \langle m{
ho} | m{
ho}
angle = 1.$$

But high q means low-r – close to nucleus. Continuum *energy* eigenstates:

$$\int_{arepsilon-\deltaarepsilon}^{arepsilon+\deltaarepsilon}ig\langlearepsilon' j | m | arepsilon j | m
angle \, darepsilon' = 1.$$

enhanced near origin for Coulomb potentials. Approximate sommerfeld enhancement:

$$\left.\frac{K_{ns_{1/2}}}{K_{ns_{1/2}}^{\mathrm{pw}}}\right|_{r\to 0}\approx \frac{8\pi Z}{\left[1-\exp(-\frac{2\pi Z}{|p'|})\right]n^3|p'|},$$

• Orders of magnitude enhancement

Low-r scaling

As well as Sommerfeld enhancement (enhance continuum wavefunction as low-r), same for bound states

- Common approach: Use H-like wavefunctions with $Z_{
 m eff} = n \sqrt{|E|/R_y}$
- Works very well for many applications: fine at intermediate to large r
- Fails at low-*r*
- H-like functions: $\psi(0)^2 \sim Z_{
 m eff}^3$
- True wavefunctions: $\psi_{
 m inner}(0)^2 \sim Z^3$, $\psi_{
 m outer}(0)^2 \sim Z^1$

• Orders of magnitude "enhancement"

Different approximations

Very common to use: plane wave + $Z_{\rm eff}$ + non-relativistic functions $\bullet \sim$ 4 orders of magnitude too small at $\sim\!\!1$ MeV!

σ : Strong v dependence

$$\frac{\langle \mathrm{d}\sigma v \rangle}{\mathrm{d}E} = \frac{\bar{\sigma}_e c \alpha^2}{2E_H} \int \mathrm{d}v \frac{f_{\chi}(v)}{v/c} \int_{q_-}^{q_+} a_0^2 q \mathrm{d}q \, |F_{\chi}^{\mu}(q)|^2 K(E,q)$$

$$\hbar q_{\pm} = m_{\chi} v \pm \sqrt{m_{\chi}^2 v^2 - 2m_{\chi} E}$$

- Strong dependence on min q
- Strong dependence on v
- Assume standard halo model
- Account for uncertainties: $v_{\rm esc}$, $v_{\rm rms}$ etc.

Calculated cross-section

Velocity-averaged cross-sections:

Left: Heavy mediator (contact interaction)

- Assume standard halo model:
- $\,$ Above \sim few keV S1 suppressed cf S2 $\,$
- $\,$ Heavy mediator: If $E_{
 m thresh} \sim 0.5\,
 m keV$: no suppression at all!
- Heavy mediator: S1 \simeq S2

Detector response + resolution

• Detector does not have perfect resolution: *R* (raw rate) vs *S* (observable rate)

$$rac{dS}{dE}pprox \int \epsilon(E')
ho(E'-E)rac{dR}{dE'}dE'$$

- $\bullet~\epsilon$ detector sensitivity + hardware threshold; <code>E_{thresh}</code>: software threshold
- ρ : energy resolution of detector: often assumed Gaussian
- ${\ensuremath{\, \bullet }}$ Substantial part of rate can come from ${\ensuremath{\rm below}}$ threshold
- Can be more precise: model number of produced photoelectrons etc.

Detectable rates:

- Hard-ware & software thresholds
- Detector resolution + efficiency
- velocity error important

Low mass (\sim GeV) WIMPs

- Substantially less constrained
- Look for deposited energy: low-mass too small
- Electron recoil instead of nuclear
- Can be advantage: large number

 $dR = \frac{n_T \rho_{\rm DM}}{m_{\gamma} c^2} \frac{\mathrm{d} \langle \sigma_{njl} v_{\chi} \rangle}{\mathrm{d} E} \,\mathrm{d} E$

Annual modulation

- Yearly change in event rate:
- Sun + Earth velocities add
- $\Phi(t) = \Phi_0(1+5\%)\cos(\omega t + \phi_{\text{June}2})$
- Rate *R* not necessarily cosine (non-linear *v* dependence)

DAMA/LIBRA

Annual modulation

- ullet 250 kg highly radiopure Nal, ~ 1 ton lpha yr
- Only "S1" (solid Nal, no gas phase)
- See significant (> 9 σ) annual oscillation at low energy (correct phase, frequency)
- Other experiment see nothing: but comparison is model-dependent

DAMA/LIBRA Phase II

Lower energy: down to 1 keV (from 2)

- phase II: 1.13 ton×yr (blue); phase I: 1.33 ton×yr (red);
- Expect exponential increase in low-E events (if χ -e)
- $ullet \implies$ may have significant implications for $\chi ext{-}e$

Calculated rate: fit to DAMA II

90% C.L. uncertainties. Include:

Atomic physics errors (small), Velocity distribution (moderate), resolution + threshold (dominant)
 BMR and V. V. Flambaum. Phys. Rev. D 100, 063017 (2019).

Existing constraints

PHYSICAL REVIEW D 96, 043017 (2017)

New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon

Rouven Essig,1,* Tomer Volansky,2,* and Tien-Tien Yu1.3,*

- Constraints from "S2"-only (just ionisations, no S1)
- Xe10 15 kg·days = 0.04 kg·yrs – finished 2011
- Xe100 30 kg·yrs
 finished 2016
- Xe10: better constraints!?!

(- newer S2-only constraints coming from Xe1T)

Is DAMA electron-interacting DM? (No)

- Best-fit to 1-2 keV DAMA/LIBRA phase II
- Shaded green: 90% C.L.
- Ignore spectral fit
- Still: 100% excluded

Looking forward: Xe1T

Potential rates

- Hypothetical event rates
- 1000kg Xe100-like detector
- for $\bar{\sigma}_e = 10^{-35} \, \mathrm{cm}^2$ not excluded!

Xenon 1T excess

Phys. Rev. D 102, 072004 (2020)

Tables of ionisation factors

PhD Student: Ashlee Caddell

$$\left(T_k - \frac{Ze^2}{r} - \varepsilon\right)\psi = 0$$

- High *p*, low-*r*: $r \sim p^{-1} \sim 10^{-3} a_B$ • Low-*r*: $\frac{Ze^2}{r} \gg |\varepsilon|$
- At low r, ψ independent of ε
- Deepest shell always dominates
- Use 1D $K_n(q)$ instead of K(E,q)

$$K(E,q) = \sum_n K_n(q) \Theta(E-E_n)$$

Conclusion

- S1 (prompt scintillation signal) not very suppressed
- $\,$ For heavy mediator, $m_\chi\gtrsim 0.1\,{
 m GeV}$, $E_{
 m thresh}\sim 0.5\,{
 m keV}$ no suppression
- S2 (ionization-only signal): good for placing constraints, not for detection
- Combined S1 and S2 possible for low-mass WIMPs new discovery potential
- Tables of (mostly) model-independent ionisation factors made available
- Apply to your favourite DM model

Warnings

- Must use accurate atomic model for wavefunctions
- Highly dependent on modelling of low-energy detector response/resolution
- · Highly velocity dependent: halo considerations more important than nuclear case