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Abstract

A huge effort from scientists all around the world has pushed tests of physics
to ever higher energy scales (e.g. at CERN), though no trace of non-standard
model physics has yet been found. In this thesis, I explore another avenue: the
use of high precision atomic physics to study fundamental interactions at low
energy.

I present new calculations of parity-violating effects in atoms. I consider
several approaches, including exploiting the very high accuracy that is possible
in simple systems, the very large effects that can be found in more complex
systems, and studying processes that are sensitive to hadronic parity violation.

Then, I consider the interaction of atoms with various background “cosmic”
fields. Candidates for such fields include dark matter (e.g. axions) and physics
described by extensions to the standard model. By combining my calculations
with existing experimental results, new limits on several parameters of physics
beyond the standard model are set.

I then consider the specific case of axion dark matter in detail. I calculate
several new effects that an axion field would induce in atoms. Crucially, these
effects are linear in the axion interaction strength; most current search tech-
niques are based on effects that are at least quadratic in this (extremely small)
parameter.

Finally, I consider the interaction of WIMPs with electrons in regard to to
dark matter detection experiments. A very promising claim of a positive detec-
tion of WIMPs was made by the DAMA Collaboration. This result is the only
long-standing claim for a positive WIMP detection, and electron-interacting
WIMPs are the lead candidate. I demonstrate that relativistic effects give the
dominant contribution to such processes, meaning that non-relativistic calcu-
lations may underestimate the cross section by many orders of magnitude; all
previous calculations were performed using non-relativistic wavefunctions. I em-
ploy accurate relativistic methods to calculate model-independent cross sections
and event rates. By assuming the DAMA signal is due to WIMPs, I calculate
the signal that would be expected in another experiment, XENON. By compar-
ing this to the observations of the XENON Collaboration, I entirely rule out
electron-interacting WIMPs as the source of the DAMA signal.
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Units and Notation

Units— Except for where explicitly stated, I use Hartree atomic units through-
out this thesis, in which ~ = me = aB = e = 1, c = 1/α ≈ 137.036, where me is
the electron mass, aB is the Bohr radius, e = |e| is the fundamental charge, c is
the speed of light, and α is the fine-structure constant. Some useful conversions
between atomic units, natural relativistic (~ = c = 1) units, and SI are given:

• Energy: 1 au ≡ 2 Ry ≈ 27.211 eV ≈ 4.3598× 10−18 J,

• Momentum: 1 au ≡ 2 Ry/c ≈ 3.7289 keV/c ≈ 1.9928× 10−24 kg m s−1,

• Mass: 1 au ≡ 1me ≈ 0.51100 MeV/c2 ≈ 9.1095× 10−31 kg,

• Length: 1 au ≡ 1 aB ≈ 268.17 MeV−1 ~ c ≈ 5.2918× 10−11 m,

• Time: 1 au ≡ ~/2 Ry ≈ 36.749 keV−1 ~ ≈ 2.4189× 10−17 s.

Note that to aid with comparison with other works, I adopt (in places) the
common spectroscopic convention and typically present our calculated energy
levels in units cm−1; 1 au ≈ 219475 cm−1.

Energies and wavefunctions— I employ different notations for the exact
and calculated energies:

• En denotes the “exact”1 many-body energy corresponding to the “exact”
atomic or molecular state Ψn,

• En denotes the calculated energy-level for an atomic state with approxi-
mate wavefunction ψn,

• εn denotes the single particle energy corresponding to orbital φn.

In which approximation the calculations were performed will be made clear in-
text; where confusion could arise I use superscripts, e.g., energies calculated in
the Hartree-Fock approximation may be denoted as EHF. Note that the calcu-
lated values En do not include the core energy, so that for a single-valence atom
in the state n, En = εn. For convenience with comparison to non-relativistic
calculations, none of the above energies include the electron rest energy.

Operators— For operators, I typically use capital letters to represent many-
electron operators, and lower-case letters to represent the corresponding single-
particle operators,

D̂ =

N∑
i=1

d̂i. (1)

I use a tilde to mean that the operator has been modified to include the core-
polarisation correction (see Sec. A.6)

d̃ = d̂+ δVd (2)

1Here, and throughout, I use the word “exact” to refer either to the real/experimental
value, or to hypothetical exact solutions to the Dirac equation for a given Hamiltonian.
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Units and Notation B M Roberts

Dirac and Lorentz conventions— I employ the standard (+ − −−) form
of the metric and use the Einstein summation convention, with Greek indices
running 0 through 3, and reserve Latin indices for the spatial components run-
ning 1 through 3; Aµ ≡ gµνA

ν = (A0,−A). I use the Dirac representation, in
which the Dirac matrices take the form:

γ0 = γ0 = β =

(
1 0
0 −1

)
, γi = −γi =

(
0 σi
−σi 0

)
,

γ = γ0α = (γ1, γ2, γ3)T , γ5 = −γ5 = iγ0γ1γ2γ3 =

(
0 1
1 0

)
,

(3)

where σi are the usual 2×2 Pauli spin matrices, and ‘1’ is understood to be
the 2×2 identity matrix. Then, the four-component Dirac functions, which
correspond to the single-electron orbitals, can be expressed as

φnκm(r) =
1

r

(
fnκ(r)Ωκm(n)

iαgnκ(r)Ω−κ,m(n)

)
, (4)

where fnκ and gnκ are known as the “large” and “small” radial components,
respectively, and

Ωκm(n) =

(−1)j−l−1/2
√

κ+1/2−m
2κ+1 Yl,m−1/2(θ, φ)√

κ+1/2+m
2κ+1 Yl,m+1/2(θ, φ)

 (5)

are the two-component spherical spinors. Here, κ = (l − j)(2j + 1) is the
Dirac quantum number that specifies the values of both the orbital (l) and total
(j = l ± s) angular momentum, m = jz is the projection of the total angular
momentum j = l + s on the (z-)axis of quantisation, l = |κ+ 1/2| − 1/2 is the
value of the orbital angular momentum, n = r/r, and Ylm are the spherical
harmonics.

Uncertainties— Uncertainties (1σ by default) in values are represented by
digits in parenthesis directly following the value, where the uncertainty is in the
last digits of the value. For example, x = 1.234(56) ≡ 1.234 ± 0.056. Unless
otherwise stated, limits (e.g., x < 1.29) are given to 1σ significance.

Abbreviations— The following abbreviations, which are also defined upon
their first use in each chapter, are used frequently throughout this thesis:

• ALP Axion-like particle,

• AM Anapole moment,

• CPSCI Correlation potential in the screened coulomb interaction,

• DM Dark matter,

• EDM Electric dipole moment,

• NSI/NSD Nuclear spin independent/Nuclear spin dependent,

• PNC Parity nonconservation,

• QCD/QED Quantum chromodynamics/Quantum electrodynamics,

• SM Standard Model.

x



CHAPTER 1:
Introduction

Despite its extraordinary success, the standard model is known to be incom-
plete. For example, the allowed charge-parity violation in the standard model
cannot account for the observed matter–antimatter asymmetry in the universe,
there is no explanation for dark matter or dark energy, and there is no working
quantum theory of gravitation. It is widely believed that the standard model is
a low-energy manifestation of a more complete theory. So-called Grand Unified
Theories attempt to unify the electroweak theory with quantum chromody-
namics. There exist several candidate theories, such as various supersymmetry
models, which make predictions that differ between each other and from the
standard model; experiments must be performed to determine which, if any, is
the more correct description of nature.

A huge concerted effort from scientists all around the world has pushed
tests of physics ever further on the high-energy frontier. The success of this
considerable investment is embodied in the triumphant discovery of the Higgs
boson at CERN just a few years ago. Other notable large-scale searches include
astrophysics experiments, such as the Planck and BICEP space telescopes, which
provide insight into the conditions of the early universe. Such grand expeditions
have, in a certain light, been ultimately disappointing in the sense that any
physics beyond the standard model remains as elusive as ever.

In this thesis, I explore another avenue: the use of high precision atomic and
molecular physics to study fundamental interactions at low energy. In particular,
I investigate processes that involve the violation of fundamental symmetries,
including time-reversal (T ), parity (P ), charge-conjugation (C), and Lorentz-
invariance. Such effects are typically highly suppressed in the standard model,
and are thus especially sensitive to new physics beyond it.

The benefits of exploiting low-energy atomic phenomena as probes of physics
beyond the standard model are threefold. Firstly, atomic and molecular exper-
iments are considerably cheaper than their high-energy counterparts, allowing
for a broader area of exploration. Secondly, low-energy atomic experiments
probe a very different sector of physics than the high-energy colliders and as-
trophysics telescopes, which means they can investigate otherwise inaccessible
phenomena. Thirdly, new advances in experimental methods (such as molecular
cooling and trapping, and spectroscopy with highly charged ions) and in atomic
theory have led to the ability to make extremely precise theoretical calculations
and experimental measurements of small effects that are particularly sensitive
to new physics.

In Chapter 2, I provide a brief review of the relevant background theory and
current status of the literature for investigations of parity and time-reversal vi-
olations in atomic systems. Then, in Chapter 3, I present our new calculations
of parity-violating effects in atoms. I consider several approaches, including ex-
ploiting the very high theoretical accuracy that is possible in simple systems,
the very large effects (and therefore experimental sensitivity) that can be found
in more complex systems, and studying processes that are sensitive to hadronic
parity violation. These calculations can be expected to motivate and direct
future experimental work in this important area. In Chapter 4, I present a de-
tailed study of one particular atomic many-body effect that has received little
attention in the literature. This effect, the so-called “double core polarisation”,
provides a significant contribution to calculations of parity and time-reversal
violating effects in atoms, and may have been missed in some previous calcu-
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lations. It is shown that this effect is larger than may have been expected,
and our calculations may help to alleviate some disagreement in the literature.
This effect is particularly large in parity-violating electronic transitions involv-
ing d-states, which is especially important as new measurements based on these
transitions are currently under way.

Chapter 5 considers the interaction of atomic systems with various back-
ground “cosmic” fields. Candidates for such fields include dark matter (e.g. ax-
ions), dark energy, and even more exotic physics described by extensions to the
standard model. The interactions of such fields with atomic electrons and nu-
clei can induce parity and time-reversal violating effects in atoms and molecules.
The study of such effects can in turn shed light on fundamental physics that
gave rise to them. I derive several important and general results regarding the
interaction of atoms with such background fields, and perform accurate atomic
calculations of the induced observable effects. By combining our calculations
with existing experimental results, new limits on several parameters of Lorentz
and CPT violation are set.

Building on the results of the previous chapter, I consider the specific case of
axions in more detail in Chapter 6. Axions are pseudoscalar particles that were
first introduced as an elegant solution to one of the most important problems
from quantum chromodynamics, the strong-CP problem (the observed lack of
CP -violation in the strong interactions). Since then, it has been noted that
axions (and other axion-like particles) well satisfy the conditions for cold dark
matter, and are currently one of the leading dark matter candidates. I calcu-
late several new observable effects that an axion field would induce in atoms
(including oscillating electric dipole moments). The effects considered here are
greatly enhanced in certain systems, and are sensitive to a different region of the
parameter space than the effects utilised in most existing axion searches. As a
consequence, our results may lead to new experiments which are complementary
to existing ones.

In Chapter 7, I consider the interaction of WIMPs (weakly interaction mas-
sive particles) with atomic electrons. WIMPs are one of the simplest models
for dark matter, and are generally considered to be one of the best dark matter
candidates. The interaction of WIMPs with electrons is particularly important
for the interpretation of the results of the European DAMA collaboration. The
DAMA experiment is a dark matter direct-detection experiment that aims to
detect the scintillation light emitted when dark matter particles scatter off the
NaI detector. Due to the relative motion of the earth around the sun, one of the
major experimental signatures sought for in direct detection experiments is an
annual modulation in the event rate; and this is precisely what the DAMA col-
laboration have observed. The DAMA result is currently the only long-standing
claim for a positive dark matter detection. Null results from many other more
precise experiments, however, all but rule out the possibility that the DAMA
result is due to a WIMP–nucleus interaction, which was thought to be the most
likely explanation. Despite this, it has been noted that dark matter particles
that interact favourably with electrons could potentially explain the DAMA
modulation, without being ruled out by the other null results. In that case,
the DAMA signal would be caused by atomic ionisation that is induced by the
scattering of dark matter particles off the atomic electrons. This has been inves-
tigated previously, however, until now a rigorous ab initio relativistic treatment
of the atomic structure has not been implemented.

2



B M Roberts

First, general results are derived for the ionisation of atomic systems due to
the scattering of slow, heavy particles (such as WIMPs). Conventional wisdom
has it that the ionisation probability for such a process should be exponen-
tially small. It is shown, however, that due to non-analytic, cusp-like behaviour
of Coulomb functions close to the nucleus this suppression is removed, lead-
ing to an effective atomic structure enhancement. Further, I demonstrate that
relativistic effects actually give the dominant contribution to such a process,
meaning that non-relativistic calculations may underestimate the cross section
by many orders of magnitude. This is a particularly significant finding, since all
previous calculations relating to this problem were done using non-relativistic
wavefunctions. I then employ the relativistic Hartree-Fock method to calculate
model-independent cross sections and event rates for the atomic ionisation in-
duced by the interaction with dark matter for several atoms of experimental
interest.

By assuming the DAMA modulation is a positive detection, I calculate the
event rates that would be expected in two other direct detection experiments,
XENON and CoGeNT, which are also sensitive to WIMP–electron interactions.
The CoGeNT results are more-or-less consistent with DAMA, however, the
XENON results are not. From this I am able to set extremely tight constraints,
and completely rule out electron-interacting WIMPs as the source of the DAMA
modulation.

I note here that this thesis is primarily concerned with the application of
atomic calculations to tests of fundamental physics, and not the atomic calcula-
tions themselves. Therefore, except for when directly relevant, most details on
how the calculations were done are presented only in Appendix A.

3



CHAPTER 2:
Parity and Time-Reversal

Violation in Atomic Systems

In this chapter, I outline the relevant background theory for studies of
atomic parity and time-reversal violation, and give a brief overview of
the current status of the literature.

2.1 Introduction

Parity violation was first observed by Wu et al. [1] in 1957, not long after Lee
and Yang made their Nobel prize winning suggestion that parity may not be
conserved in weak interactions [2]; see Fig. 2.1. Atomic parity nonconserva-
tion (PNC) is caused by the weak interaction—either by Z0-boson exchange
between the electrons and the nucleus or by P -violating inter-nuclear forces.
It is manifested in P -violating atomic observables, the measurement of which
provide a unique and effective channel for probing the Standard Model (SM)
and searching for physics beyond it.

Experiments using Cs have been the focus of much of the attention over
the past few decades (see, e.g., the review in Ref. [3]). The most precise mea-
surement of atomic PNC is a measurement of the Cs 6s–7s PNC amplitude,
made by the group lead by Nobel laureate C. Wiemen [4]. In conjunction with
the highly-accurate calculations that are required for the interpretation (see
Refs. [5–11] and references therein), this led to a determination of the 133Cs
nuclear weak charge (QW ), an electron–nucleus weak coupling constant, that
stands as the most precise low-energy test of the SM to date. The result of
this analysis differers from the SM prediction by 1.5σ [11]. Though this should
be considered reasonable agreement, it does indicate that further investigations
may yield important new results.

Much of the interest in the area of atomic PNC has been focused on sev-
eral other important areas: measuring PNC in a chain of isotopes [12]; nuclear
anapole moments (AMs) [13, 14] (see also [15]); and PNC in molecules [16]. Ac-
curate atomic calculations are not required for interpreting the measurements of
PNC in a chain of isotopes of the same atom, since the atomic structure remains
largely unchanged and cancels in the ratio. The nuclear AM, first introduced

Figure 2.1 The distribution of electrons emitted in the β-decay of polarised 60Co nuclei was observed to be
anisotropic, providing unequivocal proof of parity violation [1].
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by Zel’dovich [17], is a P -violating, T -conserving nuclear moment borne of P -
violating forces inside the nucleus. The experiment [4] of the Wieman group
provides the only observation of a nuclear AM so far; further measurements of
AMs would provide especially valuable information for the study of hadronic
parity violation.

I also note that it is possible to search for the parity and time-reversal
violating effects that are induced in atoms and molecules via their interaction
with dark matter, including axions. Crucially, these effects are linear in the
small parameter that quantifies the interaction strength between dark matter
and ordinary matter particles; most current search techniques are based on
effects that are at least quadratic in this parameter. This will be discussed in
more detail in later sections.

2.2 Sources of atomic parity violation

The Hamiltonian describing the electron–nucleus weak interaction due to Z0-
boson exchange can be expressed

ĥPNC =
−GF√

2

∑
N

(
C1N N̄γµNēγ

µγ5e+ C2N N̄γµγ5Nēγ
µe
)
, (2.1)

where the sum runs over all nucleons, e and N are the electron and nucleon
wavefunctions, respectively, GF ' 2.223× 10−14 au (= 1.166× 10−5 GeV−2) is
the Fermi weak constant, γµ and γ5 are Dirac matrices, and to lowest order in
the SM, C1n = −1/2, C1p = (1 − 4 sin2 θW )/2 ≈ 0.04 (where n and p denote
neutrons and protons), and C2p = −C2n = (1 − 4 sin2 θW )λ/2 ≈ 0.05, where
λ ≈ 1.26, and θW is the Weinberg angle, sin2 θW ≈ 0.24. This Hamiltonian is
P -violating, but T -conserving.

Treating the nucleons non-relativistically, the temporal component (µ = 0)
of the pseudovector electron (vector nucleon) part of the interaction (2.1) leads
to the nuclear-spin-independent (NSI) Hamiltonian,

ĥNSI =
−GF
2
√

2

(
QW ρ̃(r) + [NC1n − ZC1p] ∆ρ(r)

)
γ5,

where N and Z are the number of neutrons and protons, respectively, QW =
2ZC1p + 2NC1n ≈ −N , and ρ̃ = (ρn + ρp)/2 and ∆ρ = (ρn − ρp) with ρn,p the
normalised nucleon density. In the calculations, it is assumed that ρn = ρp = ρ,
and the second term above drops out:

ĥNSI =
−GF
2
√

2
QW ρ(r)γ5. (2.2)

In reality, there is a small difference between average radii of protons and neu-
trons, the so-called neutron skin; though small, this gives important corrections
(see, e.g., Refs. [18–20]).

The spatial components of the vector electron part of (2.1) lead to the
nuclear-spin-dependent (NSD) Hamiltonian

ĥZNSD =
−GF√

2
κZ

K − 1/2

I(I + 1)
α · Iρ(r), (2.3)
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Figure 2.2 Example diagrams representing the interaction of atomic electrons with QW (2.2) and (2.3), QW
perturbed by the hyperfine interaction (2.4), and the nuclear AM (2.5), respectively.

where α = γ0γ, κZ = −C2n,p, and K = (I + 1/2)(−1)I+1/2−l with l the orbital
momentum of the unpaired nucleon. This contribution is suppressed due to a
number of factors; the coefficient |C2N | � |QW |, and also (unlike in the NSI
case) the nucleons do not contribute coherently. In the shell model only the
unpaired (valence) nucleons contribute. There is also a NSD contribution that
comes from the interaction with QW perturbed by the hyperfine interaction
[21, 22],

ĥQNSD =
GF√

2
κQ
α · I
I

ρ(r), (2.4)

which is suppressed by the ratio of hyperfine to fine-structure coefficients: κQ =
− 1

3QW
αµN
mpRN

' 2.5 × 10−4A2/3µN (A = N + Z, mp is the nucleon mass, α

is the fine-structure constant, RN is the nuclear radius, and µN is the nuclear
magnetic moment).

For heavy atoms, however, it is the contribution from the AM of the nucleus
that dominates the NSD effects. The Hamiltonian describing the interaction of
atomic electrons with the nuclear AM is

ĥaNSD =
GF√

2
κa

K

I(I + 1)
α · Iρ(r), (2.5)

where κa ∼ αA2/3 for heavy atoms. The investigation of AMs will be discussed
further in Sec. 2.4.1.

Example diagrams for the contributions to atomic PNC are represented in
Fig. 2.2. Overall, the PNC Hamiltonian can be written as the sum the the NSI
and NSD parts,

ĥPNC = ĥNSI + ĥNSD =
GF√

2

(−QW
2

γ5 + κ
α · I
I

)
ρ(r), (2.6)

where κ = K
I+1κa −

K−1/2
I+1 κZ + κQ. The contributions from the NSI and NSD

parts have different experimental signatures, and can thus be treated separately
in the analysis. It should also be noted that the NSI part is a scalar interac-
tion, and therefore cannot mix atomic states of different angular momentum J ,
whereas the vector NSD interaction can (∆J ≤ 1, Ji + Jf > 0).

2.3 Measurements and calculations of atomic PNC

The prospect of measuring PNC in atoms was first considered for hydrogen
in 1959 by Zel’dovich [23], who concluded that the effect was too small to be
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measurable. More than a decade later, however, the Bouchiats demonstrated
that the magnitude of atomic PNC scales a little faster than Z3 [24–26], where
Z is the nuclear charge, meaning that there was a real possibility for non-zero
measurements in heavier systems. For more detail, see also the book [27] and
the reviews [3, 28].

From quantum electrodynamics (QED), an electric dipole (E1) transition
between atomic states of the same parity cannot arise without external fields
due to the conservation of parity. However, the weak interaction, which violates
parity, leads to the mixing of opposite-parity states and therefore gives rise to
small P -violating E1 amplitudes between states (a→ b) of the same (nominal)
parity, known as PNC amplitudes:

Ea→b
PNC =

∑
n

[
〈Ψb|D̂|Ψn〉〈Ψn|ĥPNC|Ψa〉

Ea − En
+
〈Ψb|ĥPNC|Ψn〉〈Ψn|D̂|Ψa〉

Eb − En

]
, (2.7)

where D̂ = −e∑i ri is the many-body operator of the electric-dipole (E1) in-
teraction (in the length-form). Formulas linking equation (2.7) to the reduced
matrix elements of the relevant operators are given in Appendix B.1. In ex-
periments, it is typically the interference of this amplitude with a P -conserving
effect that is directly measured. In the case of Stark-interference experiments,
such as that used for Cs [4], the P -conserving effect is induced by an applied
static electric field. The electric field gives rise to the Stark-induced E1 ampli-
tude, EStark, which is proportional to the electric field strength and the vector
transition polarisability, β. In the PNC experiment, it is the ratio Im(EPNC)/β
is measured; as such, in order to extract the amplitude EPNC, a determination
of β is also required.

Stark interference is not the only method that has been successfully utilised.
The first observation of atomic PNC was made in 1978 at Novosibirsk using
the “optical rotation” technique with Bismuth [29]. Such experiments aim
to measure the interference between the P -violating EPNC and P -conserving
M1 transitions between the same states. This relies on the fact that PNC
in atoms produces a “spin helix” (see, e.g., [27]), which interacts differently
with left- and right-polarised light. The plane of polarisation of light is rotated
as the light passes through an atomic vapour [23]. The angle of rotation for
light that is tuned to a highly forbidden transition (a → b) is proportional to
Im(EPNC)/〈b|M1|a〉, and it is this quantity that measured.

Since then, PNC has also been successfully observed in Pb, Tl, Yb, and Cs.
Table 2.1 presents a brief summary of some of the more accurate non-zero mea-
surements of atomic PNC and Table 2.2 presents the corresponding most accu-
rate calculations. The calculations are presented in units of 10−11i(−QW /N) au,
where N is the number of neutrons; this factor is chosen since QW ≈ −N . The-
oretical and experimental work has been carried out for many other systems,
see Sec. 2.4.

The Z3 scaling of atomic PNC means that heavier atoms are favoured for
the measurements, since it is natural to expect a higher experimental sensitivity
with a larger effect. However, in order to extract the relevant electroweak pa-
rameters, highly accurate atomic calculations are required, which work best for
simpler atoms. Cesium, with high nuclear charge, Z = 55, and relatively simple
electron structure (single 6s valence electron above tight Xe-like 5p6 core) is an
ideal compromise between a large effect and simplicity in the calculations. The
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Table 2.1 Summary of the more recent/accurate measurements of atomic PNC.

System −Im(EPNC)/M1ab (10−8) Year Source

209Bi 4S3/2–2D3/2 10.12(20) 1991 Oxford [30]
4S3/2–2D5/2 9.8(9) 1993 Oxford [31]

208Pb 3P0–3P1 9.86(12) 1993 Seattle [32]
9.80(33) 1996 Oxford [33]

205Tl 2P1/2–2P3/2 14.68(17) 1995 Seattle [34]
15.68(45) 1995 Oxford [35]

System −Im(EPNC)/β (mV/cm) Year Source

174Yb 1S0–3D1 39(6) 2009 Berkeley [36]
133Cs 6s1/2–7s1/2 1.5935(56) 1997 Boulder [4]

Table 2.2 Most accurate calculations of EPNC [−10−11i(−QW /N) a.u.] for transitions listed in Table 2.1. Cs
is excluded here, since it is discussed in more detail in the next section.

System EPNC Year Source

209Bi 4S3/2–2D3/2 26(3) 1989 Dzuba et al. [5]
4S3/2–2D5/2 4(3) 1989 Dzuba et al. [5]

208Pb 3P0–3P1 28(2) 1988 Dzuba et al. [37]
205Tl 2P1/2–2P3/2 27.0(8) 1987 Dzuba et al. [38]

27.2(7) 2001 Kozlov et al. [39]
174Yb 1S0–3D1 195(25) 2011 Dzuba et al. [40]

incredible precision that has been attained in both the theoretical and exper-
imental determinations of PNC in Cs have made it the focus of much of the
research in this area, and has made PNC in Cs one of the most sensitive tests
for new physics beyond the standard model.

2.3.1 Parity nonconservation in cesium

The possibility of measuring PNC in cesium was first considered in 1974 by the
Bouchiats [24], who also made the first observation in 1982 [41]. Since then,
several independent measurements have been performed by the Paris and Boul-
der groups, led by M.-A. Bouchiat and C. Wieman, respectively. A summary
of the main results is presented in Table 2.3.

The measurements culminated in 1997 when the Boulder group performed

Table 2.3 Measurements of the 6s–7s NSI-PNC amplitude in 133Cs (mV/cm).

−Im(EPNC)/β Year Source

1.52(18) 1982–6 Paris [41, 42]
1.576(34) 1985–8 Boulder [43–45]
1.5935(56) 1997 Boulder [4]
1.538(40) 2003–5 Paris [46, 47]
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Figure 2.3 As the beam of Cs passes through the region of perpendicular magnetic and electric fields, the
6s–7s transition is excited by the 540 nm dye laser [4]. The transition rate is determined from the intensity of
850 and 890 nm 6p1/2,3/2 → 6s fluorescence. All relevant directions (electric, ~E, and magnetic, ~B, fields, and

the laser polarisation, ~E) are reversed to change the “handedness” of the experiment, and to control systematics.

an extraordinarily precise measurement with an uncertainty of just 0.35% [4], a
relative precision unmatched by any other atomic PNC measurement to date.
They used a Stark-interference technique in which a beam of atomic cesium
passes through a region of perpendicular electric, magnetic, and laser fields, as
shown in Fig. 2.3. This process excites the highly forbidden 6s–7s transition,
which contains a small part that is due to the mixing of opposite-parity states by
the electron–nucleus weak interaction (2.6). The transition rate is obtained by
measuring the amount of 850- and 890-nm light emitted in the 6p1/2,3/2 → 6s
step of the 7s → 6s decay sequence. The P -violating part of the amplitude
manifests itself in small modulations to the transition rate as the “handedness”
of the experiment is changed by reversing the direction of all fields; see [4] and
references therein for details. Their final result was

− Im
EPNC

β
=

{
1.6349(80) mV/cm (6sF=4 → 7sF=3)

1.5576(77) mV/cm (6sF=3 → 7sF=4).
(2.8)

Since the interaction with the weak charge is independent of nuclear spin, it
contributes the same amplitude to each hyperfine component. Thus, by averag-
ing over the hyperfine components, one can determine the contribution due to
QW : −Im(EPNC/β) = 1.5935(56) mV/cm. The precision of the Boulder mea-
surement for the first (and so far only) time also allowed for the detection of
NSD-PNC effects, which led to a determination of the 133Cs nuclear AM [4, 48].

The more recent measurements of the Paris group [46, 47] (see also [49]) used
a different method—chiral optical gain—to detect the PNC signal. The results
using this method are not at the same level of accuracy as the Boulder measure-
ments [4], however, promising progress has been made. These new results may
prove particularly significant as an independent verification of the important
Boulder results. Even more recently, work on developing new methods has been
under way; in 2014 an experimental group from Indiana successfully utilised a
“two-pathway coherent control interference” technique to measure an M1 tran-
sition amplitude in Cs [50], which may be applied to measuring PNC in Cs with
reduced errors from systematics and unwanted interference [51].

In order to determine a value of QW for 133Cs from the measurement [4],
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Table 2.4 Calculations of the 133Cs 6s–7s PNC amplitude [−10−11i(−QW /N) a.u.]. Breit, QED, and neutron
skin corrections are not includeda.

EPNC Year Source

0.88(3) 1984 Dzuba et al. [70]
0.90(2) 1987 Dzuba et al. [71]
0.95(5) 1988 Blundell et al. [72]
0.908(9) 1989 Dzuba et al. [5]
0.909(9) 1990 Blundell et al. [6]

a Accurate calculations require inclusion of Breit

[20, 55, 56, 58] and QED [59–67] effects.

EPNC Year Source

0.905(9) 2001 Kozlov et al. [7]
0.9078(45) 2002 Dzuba et al. [8]
0.8998(24) 2009 Porsev et al. [9, 10]
0.9079(40) 2012 [9–11]b

b “Main” term from Ref. [9, 10], with corrected

core and tail contributions from Ref. [11]

both a value for the vector transition polarisability, β, and a calculation of the
atomic structure (2.7) are required. The most accurate value, β = 26.957(51) a3

B

(aB the Bohr radius), comes from an analysis [52] of the Bennett and Wieman
measurements [53]. This is not the only determination of β, and less than
perfect agreement exists between methods, see, e.g., Refs. [8, 52, 54]. At the
moment, however, this is not a major problem since the uncertainty in the
extraction of QW is dominated by the calculations. Combined with the most
accurate calculations available at the time [5, 6], the measurements indicated
good agreement with the standard model. However, the declared theoretical
uncertainty of these early calculations (1%) was not at the same level as the
measurements.

An analysis of the accuracy of the calculations was performed in light of
new experimental tests concerning E1 amplitudes and hyperfine constants in
Ref. [53]. The authors noted that many of the previous discrepancies between
theory and experiment were resolved in favor of theory, which led them to con-
clude that the accuracy of the calculations for Cs [5, 6] was actually as good
as 0.4% [53]. The new analysis indicated that the observed value for the weak
charge of the 133Cs nucleus differed from the SM prediction by 2.5σ—signaling
the possibility that new physics had been observed. The excitement was short-
lived, however, when the inclusion of the Breit (magnetic and retardation) [20]
(see also [55–58]) and radiative QED corrections [59–67] (see also [68, 69]) into
the calculations led to a triumphant restoration of the Cs results with the stan-
dard model. Concurrently, several new calculations [7, 8, 69] agreed well with
the previous results [5, 6] and confirmed the suggestion made in Ref. [53] that
the theoretical accuracy was high. At this point, all recent calculations were
in excellent agreement, and the new value of QW was consistent with the SM,
being about 1σ smaller than predicted.

More recently, a new calculation was reported by Porsev et al. [9, 10]. They
used a very sophisticated approach, applying the coupled-cluster method with
single, double, and valence triple excitations (CCSDvT)—for details, see [9, 10]
and references therein. (A brief overview of the coupled cluster method is pre-
sented in Appendix A.5.) Determining just 0.27% uncertainty of the calcula-
tions, their “correlated” PNC amplitude (that is, not including Breit, QED or
neutron-skin corrections) was about 0.9% smaller than the results of previous
calculations; see Table 2.4. This led to perfect agreement with the SM; the
central points for the weak nuclear charge extracted from the measurements
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coincided exactly with that predicted by the SM: QW = −73.16(29)exp(20)th,
QSM
W = −73.16(3)1 [9, 10]. The variation from the previous calculations was

attributed to the role of a few higher-order correlations.
In Refs. [9, 10], the “main” (n = 6, 7, 8, 9) terms in the summation (2.7) were

treated very accurately with the CCSDvT method; however, a simpler method
was used to calculate the remaining core (n ≤ 5) and highly excited “tail” (n >
9) terms. The main terms contribute about 97% to the total amplitude, though
at this level of precision accuracy of the remaining terms is important also.
From an analysis of the variation of these terms in different approximations, a
10% uncertainty for the core and tail was adopted. In Ref. [11], however, it was
shown the inclusion of many-body effects (correlations and core polarisation)
that were neglected in Ref. [9, 10] for these terms has a larger than expected
impact on the calculations. With a change in sign, the core contribution shifts by
about 200%; beyond the assumed 10% uncertainty. The tail contribution also
becomes significantly larger. With the core and tail contributions of Ref. [9,
10] substituted by those calculated in Ref. [11], the excellent agreement with
previous calculations is restored.

The final result from Ref. [11] (last row in Table 2.4) leads to a value of QW =
−72.58(29)exp(32)th, which is in reasonable agreement with the SM prediction.
Adding theoretical and experimental errors in quadrature, the Cs PNC result
deviates from the SM value by 1.5σ: ∆QW ≡ QW −QSM

W = 0.65(43). This can
be related to the deviation in sin2 θW , giving sin2 θW = 0.2356(20), 1.5σ from
the SM value of 0.2386(1) [73] at near zero momentum transfer.

Though the results of Refs. [9, 10] and [11] both indicate reasonable agree-
ment with the SM, the constraints on new physics beyond it are different.
New physics originating from vacuum polarisation can be described by the
weak isospin-conserving S and -breaking T parameters: ∆QW = −0.800S −
0.007T [74, 75]. At the 1σ level, the result of Ref. [11] leads to S = −0.81(54),
whereas in Refs. [9, 10] it was constrained at |S| < 0.45. Additionally, a posi-
tive ∆QW can be interpreted as evidence for an extra neutral boson, Zχ, in the
weak interaction [76]. The result of Ref. [11] leads to a constraint on its mass of
MZχ > 650 GeV/c2 (85% confidence level), a significantly less stringent bound
than the 1.4 TeV/c2 set in Refs. [9, 10].

Furthermore, recent measurements made by the Qweak Collaboration in 2013
at the Jefferson Lab have led to the first determination of the weak charge of the
proton, QpW = 0.064(12) [77]. Combining this with the weak charge obtained via
Cs PNC leads to a value for the weak charge of the neutron, QnW = −0.975(10).

2.4 New directions

Though it remains the case that the Cs results are the most precise atomic
PNC measurements, there are promising signs for successful parity violation
determinations in several other atomic systems. Heavy analogues of Cs, such
as Fr, have the advantage that the PNC effects can be largely enhanced [78,
79]. Preparations for PNC experiments in Fr are currently under way at the
TRIUMF facility in Vancouver [80–84].

The largest PNC signal to date was observed in Yb at Berkeley [36]. The
effect was about two orders of magnitude larger than that of Cs, and significant

1Note that the SM prediction has since been updated: QSM
W (133Cs) = −73.23(2) [73].
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improvements in the sensitivity are expected in the near future [85, 86]. Though
the accuracy of the interpretation for Yb is only around 10% [40, 87, 88], it may
prove especially fruitful for measurements of the AM and PNC in a chain of
isotopes. Also at Berkeley are ongoing measurements to search for PNC in Dy
[89, 90]. Dy possesses two nearly degenerate states (A and B) of opposite parity
and the same angular momentum, J = 10, at E = 19797.96 cm−1. By observ-
ing time-resolved quantum beats between these levels caused by interference
between the Stark and PNC mixing, the weak-interaction matrix element was
found to be 〈A|ĥPNC|B〉 = 2.3(29)stat.(07)sys. a.u. [89], consistent with theory
[91]. The unfortunate smallness of the relevant matrix element is due to the fact
that the PNC interaction cannot mix the dominant configurations of the A and
B states. Experimental work is continuing, however, with an expected improve-
ment in the statistical sensitivity of a few orders of magnitude [90]; this would
provide an important test of the SM and potentially lead to a measurement of
the Dy AM.

There have also been suggestions put forward to measure PNC in s–d3/2

transitions of single-trapped ions, such as Ba+ and Ra+ [92] (see also [93–95]).
Experimental work is currently in progress for Ba+ at Seattle [96], and for Ra+

at the KVI institute in Groningen [94, 97–100]. In Chapter 3 of this thesis,
I also consider PNC in the heavier Cs- and Fr-like ions, which have electron
structure similar to Cs. By exploiting PNC effects in heavy alkali-like ions, very
high experimental sensitivity can be achieved while not impacting too heavily
the accuracy of the calculations.

Another possibility is to move towards the lighter elements. Rb, a lighter
analogue of Cs, is a promising option to search for both QW and the AM [101].
A similar proposal has been put forward for Sr+ [102]. The atomic physics
calculations for Rb can surpass the accuracy of those for Cs, due to the simpler
electron structure and smaller relativistic corrections. This is important, since
currently (in Cs) it is the theoretical uncertainty that outweighs the experimen-
tal error.

As the theoretical accuracy for the calculations approaches the level already
attained in Cs, smaller, sub-1% corrections become important. As discussed
above, QED effects have already proven to be crucial for the interpretation of
the results in Cs. Radiative QED corrections to the ĥNSI matrix elements were
calculated in Refs. [59–67]. In Ref. [68], the “radiative potential” method was
developed as a simple yet accurate way of including these effects into the atomic
calculations for many-electron systems. This allows the inclusion of QED effects
into the E1 matrix elements and energy denominators [see (2.7)]. Along with the

calculations for the ĥNSI matrix elements from Refs. [59–67], this method was
used to determine QED corrections to several PNC amplitudes in Ref. [103]. It
is crucial that high theoretical accuracy can be confirmed through independent
calculations by several different groups. At the moment, however, for certain
systems there exists small, but significant, disagreement. In Chapter 4 of this
thesis, one particular many-body effect, the so-called double core polarisation,
is studied in detail. This effect may have been missed in some calculations,
which suggests that it has the potential to resolve some of the disagreement in
the literature [104].

Recent developments in experimental techniques are also showing a great
promise for highly precise new measurement of atomic PNC in the near future.
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For example, in Ref. [105], an optical cavity was developed that can enhance
optical rotation signals by as much as four orders of magnitude. This advantage
can be made more significant by combining this signal enhancement with further
PNC enhancements in diatomic molecules, which have nearby opposite parity
states [106].

2.4.1 Nuclear anapole moments

It was first shown by Zel’dovich in 1957 that P -violation inside a charge dis-
tribution could give rise to an AM [17]. It was subsequently pointed out that
an AM in the nucleus would contribute to NSD PNC in atoms and molecules
[13] (see also [14, 107, 108]); in fact it was demonstrated that the effect of the
AM was enhanced in heavy nuclei as A2/3, and that it dominates the NSD con-
tribution to PNC in atoms and molecules. This meant that, with sufficiently
precise measurements, atomic experiments could be used to study P -violation
in the hadron sector. This “tabletop” nuclear physics provides a unique low-
energy probe for physics that is relatively inaccessible by other means; see, e.g.,
Refs. [15, 109].

P -violating forces acting between nucleons create a spin helix structure inside
the nucleus. A part of the vector potential created in this configuration is of
a contact nature, AAM = aδ3(r), where a = −π

∫
r2j(r) d3r is the AM with

j(r) the electromagnetic current density; see, e.g., Refs. [27, 110]. A diagram
of a current distribution that gives rise to an AM is shown in Fig. 2.4. Note
that such a moment must violate parity; the AM contains the current vector j,
which is P -odd, but it’s also directed along the nuclear spin I, which is P -even:
〈a〉 = −π〈r2j〉 = |a|I/I.

The AM is quantified by the dimensionless parameter κa,

a =
1

e

GF√
2

KI

I(I + 1)
κa, (2.9)

where e is the proton charge, and K is defined in (2.3). The interaction of atomic

electrons with the AM, which has the form ĥa = eα · aρ(r) [see (2.5)], leads to
NSD-PNC effects in atoms. The interaction with the AM is the dominant NSD
contribution to PNC in heavy atoms, however its effect is indistinguishable from
that of κZ and κQ (see Sec. 2.2), and these must be calculated and subtracted
in order to extract κa from the measurements.

The Cs experiment [4] of the Boulder group provides the only definitive
observation of a nuclear AM to date (there are limits on the 203,205Tl AM from
experiment [34]). The NSD contribution to the 6s–7s PNC amplitude was found
to be Im(EPNC)/β = 0.077(11) (2.8). In Ref. [48], a value for the NSD-PNC
constant κ(133Cs) = 0.393(56) was extracted from the measurements by taking
the ratio of the calculated NSD-PNC amplitude from Ref. [111] to the NSI
amplitude, calculated in Ref. [38]. These works were chosen since they were
performed using an identical technique, and the theoretical uncertainties would
cancel in the ratio [48]. This value was confirmed in Ref. [112].

In the (nuclear) single-particle approximation, κZ for 133Cs is given by κZ =
−C2p ' −0.05. Taking many-body effects into account, a value of κZ = −0.063
was calculated in Ref. [113]. Atomic calculations performed in Ref. [112] (see
also [21, 22, 114]) found κQ = 0.017. Taking these into account leads to a value
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for the AM constant [28]

κa(133Cs) = 0.362(62) (2.10)

(see [48] for a discussion of finite-nuclear-size effects).
The SM prediction of κa is highly dependent on nuclear physics calculations.

For 133Cs, it ranges from as high as κa = 0.36 in the single-particle approxima-
tion down to κa = 0.11 depending on how the many-body effects are included,
see, e.g., [22, 110, 113, 115, 116] (see also [28] for a discussion). It must, there-
fore, be concluded that the Cs results are in reasonable agreement with the
standard model.

There are, however, discrepancies between weak meson-nucleon coupling
constants extracted from the Cs AM and those extracted from hadron scat-
tering experiments; see, e.g., [28, 117]. There is also a problem from the mea-
surements in Tl. The AM of 203,205Tl has been constrained as κa = −0.22(30)
[34, 118], which is inconsistent both with that predicted by nuclear theory (be-
tween κa = 0.10 and 0.48, see, e.g., [22, 110, 113, 116]) and with the Cs results.
It is clear that there is much to be gained from further investigation into this
field.

The current status of nuclear physics means that even modestly accurate
measurements of the AM can shed light on important physics. Therefore, the
extreme precision that is required of the atomic calculations for extracting QW
is not necessary. This frees the possibility of exploiting favorable conditions in
more complicated atoms and molecules where the effect is larger. Also, it would
be extremely beneficial to measure AMs for nuclei with an unpaired neutron
(Cs and Tl have unpaired protons). In Sec. 3.4 of Chapter 3 of this thesis, I
present calculations for AM (due both to unpaired protons and neutrons) and
QW induced PNC amplitudes for several heavy rare-earth and actinide atoms
in which the effect is enhanced by the presence of pairs of close opposite-parity
levels (see also Refs. [119, 120]). Experimental work to measure AMs is in
progress at Berkeley for Dy [89, 90] and Yb [36, 85], at Heraklion for Xe and
Hg [105], and at TRIUMF for Fr [80–84].

In Refs. [16, 108] it was noted that the effect of the AM is strongly enhanced
in diatomic molecules due to the mixing of close rotational states of opposite
parity, including the mixing of Λ or Ω doublets (see also [121]). The PNC effects

J

a

B

Figure 2.4 Diagram showing the toroidal current, J , the magnetic field it produces, B, and the resulting
anapole moment, a.

14



2.4. New directions B M Roberts

produced by QW are not enhanced, meaning it is the AM effect that dominates
PNC in molecules. For a review of P - and T -violation in diatomic molecules, I
direct the reader to Ref. [122].

The enhancement of the AM effects in molecules is due to the ability of
the AM to mix very closely spaced rotational levels of opposite parity. The
intervals between these levels are around five orders of magnitude smaller than
those between opposite-parity states in atoms, meaning the PNC effects can be
around five orders of magnitude larger. Further enhancement may be achieved
by a reduction of the intervals by an external magnetic field [108]. Note that
very close levels of opposite parity can also be found in heavy atomic systems,
such as the actinide and rare-earth metals [12]; however, this is often at the loss
of single-particle s-p1/2 mixing [91, 123], which suppresses the overall effect.

Molecules and molecular ions with Σ1/2 or Π1/2 electronic ground states
are good candidates for the measurements [16, 108]. Molecular PNC experi-
ments are currently in progress for BaF at Yale [124] and RaF at KVI [125].
Measurements of the AM in molecules also require electron structure calcula-
tions for their interpretation. A number of calculations have been performed
for diatomic molecules of experimental interest; see, e.g., Refs. [125–129] and
references within.

Recent progress in molecular cooling and trapping techniques have made this
area particularly exciting for breakthroughs in the very near future; see, e.g.,
[130] and references therein. Laser cooling of molecules was first demonstrated
experimentally with polar SrF molecules in 2010, where temperatures of a few
milli-Kelvin were achieved [131]. In mid-2014, magneto-optical trapping of SrF
was demonstrated at a temperature of about 2.5 mK [132]. Other schemes, such
as those employed recently to cool polyatomic CH3F molecules [133], are also
making promising leeway. Such techniques will prove exceptionally useful not
only in searching for PNC, but also increasingly in the search for permanent
EDMs of molecules.

2.4.2 Electric dipole moments

It should be noted that any “new physics” involved in atomic PNC would con-
stitute a relatively small correction to an already very small effect. The case of
electric dipole moments (EDMs), however, is somewhat different. Permanent
EDMs of fundamental particles—which are necessarily P - and T -violating—are
highly suppressed in the SM, and those predicted by new theories are often
many orders of magnitude larger. Atomic and molecular EDMs are therefore
particularly sensitive probes for theories beyond the standard model. Recent
advances in both theoretical and experimental techniques makes this a very
exciting area for potential discovery in the near future, e.g., in constraining
the electron EDM. Furthermore, if CPT is a good symmetry (as it is in gauge
theories), T -violation would be accompanied by CP -violation, which was first
observed in 1964 in the decay of K0 particles [134]. It is well known that the
CP -violation allowed by the SM is insufficient to explain the matter-antimatter
asymmetry of the universe; the search for new sources of T - and CP -violation
is therefore a crucial front for fundamental physics.

A permanent EDM of a stable particle (e.g., a nucleon, atom, or molecule)
would violate both P and T invariance, see Fig. 2.5. The SM allows only
extremely small EDMs of fundamental particles. Conversely, most extensions
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to the SM predict much larger EDMs, which are within experimental reach—
making EDMs an extraordinarily sensitive probe for new physics [135]. The
parameter space for CP -violation allowed in supersymmetric theories is already
very strongly limited by EDM measurements [135–137].

The EDM, D(a), of an atom or molecule in state a can arise either from the
sum of the intrinsic EDMs of the constituent particles, or from the mixing of
opposite-parity states due to a P - and T -violating interaction, ĥPT :

D(a) = 2
∑
n

〈Ψa|D̂|Ψn〉〈Ψn|ĥPT |Ψa〉
Ea − En

. (2.11)

An atomic or molecular EDM can be generated via several (P ,T )-violating
mechanisms, e.g., the interaction with the electron EDM, and (P ,T )-violating
electron–nucleon and nucleon–nucleon interactions [138, 139]. Different systems
have different sensitivities to the various sources, depending on electronic and
nuclear structure. For example, in paramagnetic systems (with non-zero J), the
EDM is due almost entirely to the electron EDM and (P ,T )-violating electron–
nucleon interactions. For diamagnetic systems (J = 0), however, EDMs are
mostly due to the (P ,T )-odd inter-nuclear forces and the NSD electron–nucleon
interaction.

The existence of (P ,T )-odd nuclear forces gives rise to (P ,T )-violating nu-
clear moments in the multipole expansion of the nuclear potential. The lowest-
order term in the expansion, the nuclear EDM, is unobservable in neutral atoms
due to total screening of the external electric field by the atomic electrons (the
Schiff theorem) [140]. I note, however, that it may be possible to observe the
nuclear EDM in ions (see, e.g., Ref. [141]). The first non-vanishing terms that
survive the screening in neutral systems are the so-called Schiff moment and
the electric octopole moment. After the nuclear magnetic dipole moment, the
lowest magnetic term in the expansion is the magnetic quadrupole moment.

From theoretical calculations, the atomic and molecular EDMs can be linked
to the hadronic and leptonic mechanisms that gave rise to them, leading to
limits—and potentially values—for important fundamental physics parameters.
A summary of some of the more recent atomic and moleculer EDM measure-
ments are presented in Table 2.5. Experiments have also been performed using
Rb [142], the excited 5p56s 3D2 state of Xe [143], and the YbF [144], PbO [145],
and ThO [146] molecules. No non-zero EDM has been observed for atoms or
molecules (or indeed any fundamental particle) so far; the most stringent limit
D(199Hg) < 3.1× 10−29 (2σ) comes from the measurements in Hg [147, 148].

J

P T
J

J

D

D D

Figure 2.5 The expectation value of the electric dipole operator, d, lies in the direction of the total angular
momentum, J ; however, d is P -odd and T -even while J is P -even and T -odd.
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Table 2.5 Summary of the more recent atomic and molecular EDM measurements.

System EDM (e · cm) Year Source

Paramagnetic 133Cs −0.18(69)× 10−23 1989 Massachusetts [149]
205Tl −0.40(43)× 10−24 2002 Berkeley [150]
225Ra −0.05(25)× 10−21 2015 Argonne Nat. Lab. [151]

Diamagnetic 129Xe 0.07(33)× 10−26 2001 Michigan [152]
199Hg 0.049(150)× 10−28 2009 Seattle [147]

Molecular TlF −0.17(29)× 10−22 1991 Yale [153]

Much experimental work is currently under way that promises significant
improvements in the measurements in the near future, e.g., in Xe [154], YbF
[155, 156], TlF [157] and ThO [158–161]. New experiments are also in prepara-
tion designed to measure the EDM of Xe [162] and Fr [163] at CYRIC in Tohoku,
and Rn at TRIUMF [164] (see also [165]). Very recently, the SrF molecule was
successfully trapped and cooled, demonstrating the the ability of this technique,
which can be applied to molecular EDM and PNC experiments [131, 132].

EDM measurements have recently been perfomed for Ra at the Argonne
national laboratory [151] (see also [166, 167]). Though not at the same level
of precision as the Hg or Tl measurements, this result represents a great step
forward and is very promising in terms of future measurements in heavy systems.
Measurements using Ra are also currently underway at the KVI institute [168].

A proposal to use mixtures of 3He and 129Xe gas offers the possibility of up
to four orders of magnitude improvement compared to the 199Hg EDM result
[169]. A recent proposal to use an atomic fountain experiment to measure the
EDMs of alkali atoms is presented in Ref. [170]. Experiments to search for
EDMs in condensed matter systems have been proposed [171–173], and recently
performed using Eu0.5Ba0.5TiO3 [174].

Electron EDM The EDM of an electron, should it exist, can induce an EDM
in an atom or molecule by interacting with the atomic field leading to the
mixing of opposite-parity states (2.11). The magnitude of such an EDM can be
expressed in the form D = Kde, where de is the electron EDM magnitude, and
K is an electron structure factor that comes from atomic calculations [138, 175].
Roughly, for heavy atoms with an external s or p1/2 electron, it can be estimated
as K ∼ 3Z3α2R ∼ 102–103 [138, 176] (R is a relativistic factor). The factor K
is referred to as the electron EDM enhancement factor for obvious reasons—the
EDM of an atom can be many orders of magnitude larger than the electron
EDM that caused it. In molecules, much larger enhancement K ∼ 107–1011 can
be realised due to the mixing of the close opposite-parity rotational levels [16].

Polar molecules have an exceptionally high sensitivity to an electron EDM.
The effective electric fields inside polar molecules can exceed several GV/cm—
orders of magnitude larger than any laboratory field. The energy shift of a par-
ticle due its EDM is proportional to the external field strength, and as such an
electron passing through this region would experience a significantly enhanced
shift. The effective electric field in ThO has been calculated to be 84 GV/cm,
one of the largest known [177]. In early 2014, the ACME Collaboration [146]
exploited this technique and used ThO to place the most stringent limit on the
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electron EDM to date. They found

de = −2.1(37)stat(25)sys × 10−29 e · cm, (2.12)

which, at the 90% confidence level, leads to a limit of |de| < 8.7 × 10−29 e ·
cm [146], an order of magnitude improvement over the previous best limits,
which came from experiments using YbF [144] and Tl [150]. Note that newer
calculations suggest a slightly larger limit of |de| < 9.8× 10−29 e · cm [178].

The Tl result is the best limit on the electron EDM coming from a para-
magnetic atom [150]. Using the calculated value for the enhancement factor
K = −585 from Ref. [179], this led to the value de = 6.9(74) × 10−28 e · cm.
The value of K for Tl is very sensitive to atomic many-body effects, but there is
excellent agreement between the most complete calculations [179–181] (see also
[182] which gives a smaller result). The diamagnetic (closed shell) atoms are
much less sensitive to the electron EDM; e.g. the enhancement factor for Hg is
K ∼ 10−2 [108]. Despite this, the strong constraint on the Hg EDM [147, 148]
means the limit on electron EDM extracted from these measurements is com-
petitive with the Tl result.

I also note that the interaction of various background cosmic fields may
also induce EDMs in atomic systems. One case of particular interest is that of
axions, which are a promising dark-matter candidate. This idea is the focus of
Chapters 5 and 6.
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CHAPTER 3:
New Directions for

Atomic Parity Violation

In this chapter, I explore possible future directions for investigations of
atomic parity violation. With the aim of motivating future experiments,
I present here calculations of energy levels, matrix elements, lifetimes,
hyperfine structure constants, and parity nonconservation amplitudes of
several heavy atoms and ions. I consider parity-violating effects that are
induced both by the nuclear weak charge and the nuclear anapole moment,
which are relevant to tests of the electroweak theory at low energy, and to
tests of parity violation in the hadron sector, respectively.

3.1 Introduction

Measurements and calculations of the 6s–7s parity nonconservation (PNC) am-
plitude in cesium have lead to a determination of the nuclear weak charge, a
parameter of the electroweak theory quantifying the coupling of electrons to
the nucleus via Z0-boson exchange. This result stands as the most precise low-
energy test of the standard model to date. This precision is a result of highly
accurate measurements [4, 53] and the almost equally accurate atomic calcula-
tions used for their interpretation [5–11, 183] (see Sec. 2.3.1 for a more detailed
discussion). The interpretation shows that the value of the weak nuclear charge
for 133Cs, coming from the PNC measurements, differs from the prediction of
the standard model by 1.6σ [4, 9, 11]. Although this cannot be regarded as
disagreement, it indicates that further improvements to the accuracy of the
measurements and interpretation may lead to new important results.

These measurements have also lead to the only determination of a nuclear
anapole moment, a nuclear moment created by parity-violating forces inside the
nucleus (see Sec. 2.4.1). Further measurements of anapole moments would be
invaluable tools to investigate low-energy quantum chromodynamics and parity-
violation in nuclear physics.

It is imperative that the cesium results are verified using another system,
even if the accuracy is not improved. Moreover, I present arguments here that
in fact it may be possible to improve the accuracy using optimal conditions
found in heavy ions and more complex systems.

One way to proceed would be to try to improve the accuracy in both the
measurements and calculations in Cs. This pathway is being actively pursued
from both the theoretical [184, 185] and experimental [46, 47, 49] sides. While
this is an important endeavour, it is unlikely that a significant increase in the
accuracy for Cs can be achieved in the near future. Another possibility is to look
to other systems; several proposals have been put forward to search for PNC
in heavier atoms, where the PNC signal is expected to be larger (e.g. [78, 119,
186]), and in systems such as Rb [101], where the theoretical accuracy could
be higher. A promising alternative is to perform measurements of PNC in a
chain of isotopes [12], where the accuracy is limited only by the knowledge of
the (poorly understood) neutron distribution.

In Sec. 3.2, I present calculations of nuclear-spin-independent (NSI) PNC
amplitudes that are induced by the nuclear weak charge for the s-s and s-d3/2
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transitions in several Fr-like actinide and Cs-like rare-earth-metal ions. Parity-
violating effects in these ions are significantly larger than the effects in cesium,
while they maintain the simple single-valence electron structure. This means
that these systems may prove to be an excellent compromise between the size of
the effect and the simplicity of the calculations. In particular, it is demonstrated
that isotopes of La2+, Ac2+, and Th3+ ions have strong potential in the search
for new physics beyond the standard model: the PNC amplitudes are large,
the calculations are accurate, and the nuclei are practically stable. In addition,
232Th3+ ions have recently been trapped and cooled [187].

Then, in Sec. 3.3, I present my calculations of s-d5/2 nuclear-spin-dependent
(NSD) PNC amplitudes for Rb, Cs, Ba+, Yb+, Fr, Ra+, and Ac2+. These
systems prove to be good candidates for use in atomic experiments to extract
the nuclear anapole moment. When considering s-s, or s-d3/2 PNC amplitudes,
both the NSI and NSD parts of the parity-violating interaction contribute. This
means that if one is to extract the anapole moment, the NSI part of the ampli-
tude must be subtracted. However, due to the large change in angular momen-
tum in the s-d5/2 transitions, the (scalar) NSI interaction cannot contribute,
meaning that the only large contribution will come from the nuclear AM, which
would lead to a cleaner extraction.

Finally, in Sec. 3.4, I present my calculations of NSI and NSD parity violat-
ing amplitudes in Ba, Ra, Ac+, Th, and Pa. Parity nonconservation in these
systems is greatly enhanced due to the presence of very close electronic energy
levels of opposite parity, large nuclear charge, and strong nuclear enhancement
of parity-violating effects. The presented amplitudes constitute several of the
largest atomic parity-violating signals predicted so far. Experiments using these
systems may be performed to determine values for the nuclear AM. The consid-
ered NSI transitions could also be used to measure the ratio of weak charges for
different isotopes of the same atom, the results of which would serve as a test
of the standard model and also of neutron distributions. Barium, with seven
stable isotopes, is particularly promising in this regard.

3.2 Parity violation in Fr-like actinide and Cs-like rare-
earth-metal ions

3.2.1 A better balance between theory and experiment?

It is natural to expect a higher accuracy in measurements of systems where the
PNC effect is larger. On the other hand, for achieving high accuracy in the
calculations it is important to have systems with a simple electron structure.
In this chapter, the s-d transitions in the Fr-like ions are shown to be very
promising in this respect. The PNC amplitude is larger for atoms or ions with
higher nuclear charge Z [24]. It is also larger for the s-d transitions than for the
s-s transitions like the one used in Cs [93]. The accuracy for the here considered
calculations is also demonstrated to be high. This is because these ions have a
simple electron structure with one valence electron above closed shells—similar
to that of Cs.

There are several additional factors which promise potentially better theo-
retical accuracy for these ions than for Cs:

(i) The main source of theoretical uncertainty comes from inclusion of elec-
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tron correlations (see Apendix A). The relative value of the correlation
correction is smaller for ions than for neutral atoms (since the core is
more tightly bound).

(ii) There are no strong cancellations between different correlation corrections
for s-d PNC amplitudes [93] in contrast to very strong cancellation for the
6s–7s PNC amplitude in Cs.

(iii) The s-d PNC amplitude is strongly dominated by a single term in the
summation that has the d3/2–p1/2 E1 and s–p1/2 PNC matrix elements.
This term can be checked and/or corrected if an accurate experimental
value for the d-p E1 amplitude is known. A similar approach in Cs works
with only a limited accuracy due to strong cancellation between 6s–np
and 7s–np contributions.

PNC measurements have been considered for Ba+ [92] and are in progress
for Ra+ at the KVI institute in the Netherlands [94, 97–100]. The FrPNC
Collaboration, based at the TRIUMF laboratory in Canada, has begun the
construction of a laser cooling and trapping apparatus with the purpose of
measuring atomic PNC in microwave and optical transitions of Fr [80–84]. With
a PNC amplitude in the 7s–8s optical transition expected to be around 15 times
larger than that of Cs, and its relatively simple electronic configuration, Fr is
a very good candidate atom for precision measurements and calculations of
PNC [78, 79, 93].

With the aim of motivating experiment in this important area, I present
calculations of s-s and s-d PNC amplitudes for several Cs- and Fr-like ions.
Simple estimates show that the size of the PNC effect should scale as EPNC ∼
Z3R(Zα) /Za, where R is a relativistic factor and Za is the effective charge
defined via En = −Z2

a/2n
2 au (see, e.g., Ref. [27]). Here, En is the binding

energy of the valence electron, with n the principal quantum number (n = 7 for
Fr-like ions). Therefore, PNC effects in these ions are only slightly smaller than
in neutral atoms.

Of particular interest are the optical s-d PNC transitions of 232Th3+ and
139La2+, and the IR transition in 227Ac2+. 232Th has a half-life of 1.5× 1010 yr
and 227Ac of 21.8 yr, much more stable than Fr, for which the most stable
isotope (223Fr) has a half-life of just 22 min. 139La2+ is stable. Importantly, the
232Th3+ ion has recently been trapped and cooled by Campbell et al. [187], in
what was the first reported laser cooling of a multiply charged ion.

The experiment needed to measure the 7s–6d3/2 PNC amplitude in Th3+ is
somewhat different to the conventional PNC experiments. Neither of the states
of interest are the ground state and the PNC amplitude must be reached by first
populating the metastable 7s state. This is explored in more detail in Sec. 3.2.4.
Ac2+ maintains a 7s ground state, and has a very long lived 6d3/2 state, which
is highly beneficial for PNC measurements [92].

227Ac and the odd-nucleon isotope 229Th (with a half-life of 7340 yr) will
also be of interest for measurements of nuclear-spin-dependent PNC in optical
or hyperfine transitions, including the extraction of the nuclear anapole moment
and the strength of the PNC nuclear forces, as discussed in Sec. 2.4.1. I inves-
tigate the applicability of these ions (as well as Cs and Fr) to this scenario in
Sec. 3.3.
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Table 3.1 Comparison of calculated energy levels and experimental values (Ref. [188]) for Cs, Ba+, Fr and
Ra+. (cm−1)

Cs Ba+ Fr Ra+

Level Calc. Exp. Calc. Exp. Calc. Exp. Calc. Exp.

6s1/2 0 0 6s1/2 0 0 7s1/2 0 0 7s1/2 0 0
6p1/2 11168 11178 5d3/2 4280 4874 7p1/2 12218 12237 6d3/2 11741 12084
6p3/2 11736 11732 5d5/2 5128 5675 7p3/2 13954 13924 6d5/2 13471 13743
5d3/2 14310 14499 6p1/2 20234 20262 6d3/2 16200 16230 7p1/2 21291 21351
5d5/2 14426 14597 6p3/2 21960 21952 6d5/2 16412 16430 7p3/2 26259 26209
7s1/2 18631 18536 7s1/2 42647 42355 8s1/2 19862 19740 8s1/2 43757 43405
7p1/2 21818 21765 6d3/2 46234 45949 8p1/2 23190 23113 7d3/2 49082 48744
7p3/2 22000 21946 6d5/2 46438 46155 8p3/2 23737 23658 5f5/2 49254 48988
6d3/2 22611 22589 4f5/2 47829 48259 7d3/2 24311 24244 7d5/2 49485 49240
6d5/2 22656 22632 4f7/2 48219 48483 7d5/2 24402 24333 5f7/2 49569 49272
8s1/2 24391 24317 7p1/2 49595 49390 9s1/2 25773 25671 8p1/2 50864 50606
4f7/2 24528 24472 7p3/2 50213 50011 5f7/2 25970 — 8p3/2 52635 52392
4f5/2 24528 24472 8s1/2 58258 58025 5f5/2 25971 — 9s1/2 59448 59165
Lim.:a 31458 31406 80838 80686 32925 32849 82035 81842

a Single-electron (valence) ionisation energy of the ground state

3.2.2 Atomic-structure calculations and accuracy

To perform the calculations I use the all-order correlation potential in the screened
Coulomb interaction (CPSCI) method, as described in section A.4.2. To calcu-
late the PNC amplitudes I use the so-called mixed-states method, outlined in
Appendix A.8, including double core polarisation.

Table 3.1 compares my calculated energy levels for Cs, Ba+, Fr and Ra+

with experimental values. My calculations are accurate to around 0.1–0.5% for
most levels, which is typical for this type of calculation. Table 3.2 presents
my calculated energy levels for the Fr-like actinide ions, and Table 3.3 shows
the percentage difference between my calculations and experimental values for
the most important energy intervals for PNC in Fr, Ra+, Ac2+ and Th3+.
These intervals are important since they show up in the expression for the PNC
amplitude [see Eq. (2.7) on page 7], and are quite sensitive to correlation effects
due to the inherent cancellation. (Note, though, that by employing the mixed-
states approach, I do not include these intervals directly in the calculations; see
Appendix A.8.)

In order to get a handle on the accuracy of the atomic calculations, as well
as the all-order method, I also perform the calculations using the second-order
correlation potential (where the correlation effects are only included to second-
order in perturbation theory). I also employ a simple scaling mechanism, where
the correlation potential is scaled to reproduce the exact experimental energies
of the lowest-lying valence states, i.e. Σ→ λΣ in Eq. (A.19) of Appendix A.4.2,
where λ are constants of order 1 (a different λ is used for each orbital angular
momentum value). This procedure is a rough way of accounting for missed
correlation effects, and gives a good estimate for the size of missing correlation
diagrams. As an example, in Table 3.4, I present the calculated binding energies
for Cs in the second-order (Σ(2)) and all-order (Σ(∞)) approximations, both with
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Table 3.2 Calculated energy levels (cm−1) including all-order correlations for the Fr-like actinide ions and
comparison with available experimental data [189].

Ac2+ Th3+ Pa4+ U5+ Np6+

Level Calc. Exp. Calc. Exp. Calc. Calc. Exp. Calc.

7s1/2 0 0 5f5/2 0 0 5f5/2 0 5f5/2 0 0 5f5/2 0
6d3/2 435 801 5f7/2 4393 4325 5f7/2 6061 5f7/2 7784 7609 5f7/2 9470
6d5/2 3926 4204 6d3/2 8681 9193 6d3/2 48302 6d3/2 90713 91000 6d3/2 139415
5f5/2 23467 23455 6d5/2 14084 14486 6d5/2 55753 6d5/2 100369 100511 6d5/2 151486
5f7/2 26112 26080 7s1/2 22948 23131 7s1/2 79208 7s1/2 141157 141448 7s1/2 211402
7p1/2 29375 29466 7p1/2 59957 60239 7p1/2 123396 7p1/2 193744 193340 7p1/2 273437
7p3/2 38136 38063 7p3/2 72995 73056 7p3/2 141201 7p3/2 216937 215886 7p3/2 301680
8s1/2 69660 8s1/2 120357 119622 7d3/2 201271 6f5/2 283289 6f5/2 365542
7d3/2 73543 7d3/2 120907 119685 7d5/2 203789 6f7/2 284244 6f7/2 366832
7d5/2 74579 7d5/2 122622 121427 6f5/2 203997 7d3/2 288691 7d3/2 382067
8p1/2 80612 8p1/2 135196 134517 6f7/2 204665 7d5/2 292124 7d5/2 386532
6f5/2 83166 8p3/2 140536 139871 8s1/2 205653 8s1/2 299566 8s1/2 400640
6f7/2 83513 9s1/2 161461 160728 8p1/2 224369 8p1/2 322245 8p1/2 428393
Lim.: 141221 140590a 232015 231065a 363394 509109 500000a 667359

a Theoretical values: 140590(160), 231065(200), 500000(13000) [188]

Table 3.3 Percentage difference between calculations and experiment [188, 189] for the important energy
intervals.

Energy Interval Fr Ra+ Ac2+ Th3+

7s1/2 − 7p1/2 −0.2% −0.3% −0.3% −0.3%
7s1/2 − 8p1/2 0.3% 0.5% — 0.8%
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Table 3.4 Calculated binding energies (cm−1) for Cs in various approximations and comparison with experi-
ment (Ref. [188]). Blank means calculated value matches exactly with experiment by construction.

Level Σ(2) λΣ(2) Σ(∞) λΣ(∞) Exp.

6s1/2 −32416 −31457 −31406
6p1/2 −20539 −20290 −20228
6p3/2 −19940 −19722 −19674
5d3/2 −17567 −17146 −16907
5d5/2 −17407 −17030 −16810
7s1/2 −13024 −12832 −12827 −12817 −12871
7p1/2 −9710 −9628 −9640 −9624 −9641
7p3/2 −9521 −9448 −9458 −9445 −9460
8p1/2 −5724 −5689 −5694 −5687 −5698
8p3/2 −5639 −5607 −5611 −5606 −5615

Table 3.5 Calculated binding energies (cm−1) including ladder diagrams for La2+ and comparison with ex-
periment.

Level Σ(∞) δ Laddera Total Exp. [188] % Diff.

6s1/2 −141301 204 −141097 −141084 0.01%
6p1/2 −112930 189 −112741 −112660 0.07%
6p3/2 −109780 174 −109606 −109564 0.04%
5d3/2 −155565 1005 −154561 −154675 −0.07%
5d5/2 −153902 1025 −152877 −153072 −0.13%

a Calculations of the ladder diagrams provided by V. Dzuba [191].

and without scaling.
Note that the accuracy can be further improved by including the contri-

butions of the so-called ladder diagrams [190]. This is illustrated this using
La2+ as an example. Table 3.5 presents calculations of La2+ ionisation energies
including ladder diagrams. The experimental energies are reproduced to an ex-
traordinary accuracy, even for the notoriously difficult d levels. A full inclusion
of the ladder diagrams for all ions is beyond the scope of this thesis; currently,
the method I employ only allows inclusion of ladder diagrams perturbatively in
the energy levels, but not PNC. Here, it is demonstrate that by including the
ladder diagrams the accuracy is significantly improved, and that the accuracy
in all of these ions is very good.

I also calculate several reduced E1 matrix elements that are of interest to
PNC transitions, which are presented in Table 3.6. When matrix elements are
calculated with the intention of determining the PNC amplitude by insertion
into Eq. (2.7) (i.e. the “direct summation” method, see Sec. A.8), the time-
dependent Hartree-Fock (TDHF) equations [Eqs. (A.39) – (A.41) in Sec. A.6.1]
should be solved at the frequency of the PNC transition, not at the frequency of
the individual E1 transitions. Therefore, the values in Table 3.6 should not be
compared with experiment, rather they are presented so future PNC calculations
can be easily compared with ours. In Table 3.7, I present calculations of several
of the reduced matrix elements of the considered Fr-like actinide ions for which
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Table 3.6 Calculated E1 reduced matrix elements (au) of transitions of interest to s-d PNC calculations. Here,
the TDHF equations were solved at the energy of the relevant PNC transition, and should not be compared
with experiment (see discussion in text).

Transition Ra+ Ac2+ Th3+

7s1/2 − 7p3/2 4.485 3.775 3.326
7s1/2 − 8p3/2 0.3729 0.1755 0.0770
6d3/2 − 7p1/2 3.533 2.569 2.100
6d3/2 − 8p1/2 0.0440 0.2047 0.2275

the TDHF equations were solved at the energy of each E1 or E2 transition, and
can be compared with experiment. I employ that the notation that the tilde
over an operator implies that it has been modified to include core polarisation,
e.g., d̃E1 = dE1 + δVE1; see Appendix A.6.1. To demonstrate the accuracy of
the matrix elements, Table 3.8 presents my calculations of the reduced matrix
elements for several E1 transitions in Cs using varying approximations, and
comparison with experiment. The transitions involving the s and lowest p1/2,3/2

states are reproduced exceptionally well, all to better than 0.5%. Also, for
these transitions, the rescaling procedure (Σ → λΣ, discussed above) makes
no practical difference. For the transitions involving higher p and d states the
accuracy is lower, but still reasonable, and the scaling procedure has a larger
(but still quite small) impact.

3.2.3 Parity-violating amplitudes

In Fr, the 7s state is the ground state. However, in charged ions this is not
necessarily the case. For the ions after Ac the 5f state is pushed below 7s,
forming a new ground state (see Table 3.2). Also, after Ac the 6d3/2 state is
pushed below the 7s state. The ions after Np6+ no longer have closed p-shells
and are not considered in this thesis. A similar crossing of configurations also
occurs in the Cs isoelectronic sequence; Cs and Ba+ have 6s ground-states, La2+

has 5d3/2, and Ce3+ and Pr4+ have 4f ground-states (see Tables 3.1 and 3.5).
For a 7s–6d3/2 interval to be a viable transition for the measurement of PNC,

one of these states (7s or 6d3/2) should be either the ground state or a metastable
state that can first be populated and then the PNC transition observed. Also,
it was shown it the pivotal work of N Fortson [92] that to ensure accurate
PNC measurements of a single trapped ion both the upper and lower levels of
the transition should be long lived. In Table 3.9 I present calculations of the
lifetimes of the relevant levels for Ba+, La2+, Ra+, Ac2+ and Th3+. I show that
this condition is met in all of these ions except for Th3+, which has a long-lived
upper level but a lower level that quickly decays via E1 transitions.

Note in particular the very long-lived upper (6d3/2) state of Ac2+. This state
is practically stable, the E2 transition back to the 7s ground state (the only
lower state—see Table 3.2) is highly suppressed due to the very small energy
interval of this state, 801 cm−1. This is very beneficial for the measurement of
PNC in single-trapped ions [92].

Final Results The final calculations of the s-d and (near) optical s-s PNC
amplitudes for the Fr-like ions are presented in Table 3.10, along with some
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Table 3.7 Calculations of reduced E1 and E2 matrix elements for the Fr-like actinide ions, including all-order
correlation corrections and core polarisation. Note that the reduced matrix elements observe the symmetry
property 〈a||d̂||b〉 = (−1)Ja−Jb〈b||d̂||a〉. The absence of a value means the TDHF equations did not converge to
the desired accuracy. THDF equations solved at energy of each transition, i.e. ω = Ef − Ei in Eq. (A.40), so
these values can be compared with experiment.

i f Fr Ra+ Ac2+ Th3+ Pa4+ U5+ Np6+

E1 〈ψf ||d̃E1||ψi〉 (a.u.)
7s1/2 7p1/2 4.287 3.228 2.707 2.377 2.147 1.969 1.830

7p3/2 5.906 4.482 3.771 3.316 2.995 2.745 2.546
8p1/2 0.287 −0.071 −0.196 −0.261 −0.306 −0.342 −0.370
8p3/2 0.890 0.360 0.148 0.026 −0.060 −0.131 —

8s1/2 7p1/2 −4.195 −2.497 −1.887 −1.554 −1.340 −1.188 −1.101
7p3/2 −7.425 −4.621 −3.563 −2.974 −2.595 −2.329 −2.162
8p1/2 10.150 7.006 5.599 4.758 4.186 3.762 3.426
8p3/2 13.442 9.386 7.547 6.437 5.676 5.107 4.643

6d3/2 7p1/2 7.174 3.533 2.571 2.096 1.803 1.587 1.433
7p3/2 −3.301 −1.496 −1.050 −0.837 −0.708 −0.614 −0.549
8p1/2 −2.489 0.041 0.189 0.185 0.13 — —
8p3/2 0.764 −0.137 −0.156 −0.138 — — —

6d5/2 5f7/2 −9.117 −5.666 −2.819 −1.930 −1.498 −1.217 −0.996
7p3/2 10.156 4.795 3.417 2.749 2.344 2.044 1.835
8p3/2 −2.499 0.379 0.487 0.453 0.366 — —

5f5/2 6d3/2 7.318 4.441 2.173 1.510 1.184 0.968 0.795
6d5/2 −2.037 −1.257 −0.604 −0.417 −0.327 −0.271 −0.229

E2 〈ψf ||d̃E2||ψi〉 (a.u.)
7s1/2 6d3/2 −33.367 −14.676 −9.529 −7.065 −5.612 −4.591 —

6d5/2 −41.568 −18.868 −12.373 −9.225 −7.359 −6.049 −3.9
5f5/2 7p1/2 69.761 33.569 6.711 3.086 1.97 1.35 —

7p3/2 −47.191 −20.289 −3.408 −1.438 — — —

Table 3.8 Calculations of reduced matrix elements (au) of electric dipole transitions of interest to PNC
studies in Cs and comparison with experiment. The last column shows the percentage difference between final
calculations (using the rescaled all-order correlation potential, λΣ(∞)) and the experimental value.

This work Experiment
Transition Σ(2) λΣ(2) Σ(∞) λΣ(∞) Value Ref. % Diff.

6s1/2 − 6p1/2 4.387 4.503 4.506 4.512 4.4890(65) [192] 0.45
4.5097(74) [193] 0.04

6s1/2 − 6p3/2 6.170 6.337 6.343 6.351 6.3238(73) [192] 0.43
6.3403(64) [193] 0.17

6s1/2 − 7p1/2 0.2995 0.2744 0.2645 0.2724 0.2757(20) [194] −1.2
0.2825(20) [194, 195] −3.6

6s1/2 − 7p3/2 0.6050 0.5686 0.5581 0.5659 0.580(10) [194] −1.7
0.5856(50) [194] −3.4

5d3/2 − 6p1/2 6.744 7.039 6.927 7.032 7.33(6) [196] −4.1
5d3/2 − 6p3/2 3.037 3.173 3.121 3.170 3.28(3) [196] −3.0
5d5/2 − 6p3/2 9.254 9.629 9.481 9.616 9.91(3) [196] −2.9
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Table 3.9 Lifetimes (s) of upper and lower states of the s-d PNC transitions for main ions of interest. Here,
n is the principal quantum number: n = 6 for Ba+ and La2+, n = 7 for Ra+, Ac2+ and Th3+.

Level Ba+ La2+ Ra+ Ac2+ Th3+

(n− 1)d3/2 84.5 ∞ 0.642 1.19×106 0.58
ns1/2 ∞a 0.347 ∞ ∞ 1.12×10−6

a Here, “∞” means ground state.

Table 3.10 Calculated 7s–6d3/2 and 7s–8s PNC amplitudes for the Fr-like actinide ions. Also shown are the
ground-state levels, experimental wavelengths of the transitions (λ), and several existing PNC calculations for
comparison.

Ion ground λ (nm) |EPNC | (i(−QW /N)× 10−11 au)
-state This work Others

223Fr 7s1/2 sd 616 57.99 57.1(23) [93]
ss 507 15.38 15.56(17)a [79]

15.69(16)b [197]
226Ra+ 7s1/2 sd 827 44.35 43.9(17)c [93]

46.4 [94]
46.47a [95]

ss 230 10.89
227Ac2+ 7s1/2 sd 12484 42.81
232Th3+ 5f5/2 sd 717 43.59
231Pa4+ 5f5/2 sd 324d 43.49
238U5+ 5f5/2 sd 198 45.94
237Np6+ 5f5/2 sd 139d 44.07

a Breit interaction is removed for comparison. The final result of Ref. [79] is 15.41,

and of Ref. [95] is 45.89
b Breit and QED corrections removed for comparison. The final result of [197] is 15.49
c Rescaled from 223Ra
d Calculated (Σ(∞)) wavelength (no experimental data available)

previous calculations for comparison. The final amplitudes are calculated us-
ing the mixed-states method with the all-order correlation potential and core
polarisation (including double core polarisation).

For comparison and completeness, these calculations were also performed
for Cs, Ba+, and the first few Cs-like lanthanide ions. These much lighter ions
have correspondingly smaller PNC amplitudes. The results are presented in
Table 3.11. I have not presented a result for the 6s–7s transition in Cs since this
has been investigated by thoroughly in the recent work [11] (also see Sec. 2.3.1,
and the review [3]).

The PNC amplitudes calculated in this thesis agree very well with previous
determinations for Cs, Ba+, Fr and Ra+. For Ra+ my result is within 1% of the
result calculated in Ref. [93] using the same ‘mixed states’ method used here1.
My Ra+ value is also, however, 4–5% smaller than the amplitudes calculated in

1The information about isotope numbers is not presented Ref. [93]. It is most likely 223Ra
in the mixed states calculations and 226Ra in the direct-summation calculations.
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Table 3.11 Calculations of the PNC amplitudes for the Cs-like actinide ions and comparison with existing
calculations.

Ion ground λ (nm) |EPNC | (i(−QW /N)× 10−11 au)
-state This work Others

133Cs 6s1/2 sd 690 3.703 3.62(14) [93]
137Ba+ 6s1/2 sd 2051 2.197 2.17(9) [93]

2.46(2) [198]
ss 236 0.6582

139La2+ 5d3/2 sd 736 2.135
140Ce3+ 4f5/2 sd 721 2.076
141Pr4+ 4f5/2 sd 156 2.102

that same work as well as in Ref. [95], which used a different ‘direct summation’
approach. (See Appendix A.8 for an explanation of these two methods.) The
difference is most likely due to the double core polarisation contribution, which
I calculate to contribute −4.7% to this amplitude, and is not included in the
direct-summation calculations. Double core polarisation is discussed in more
depth in Ch. 4.

The s-d PNC transitions tend to have a single dominating term which con-
tributes ∼ 90% to the total amplitude [93]. In Th3+, for example, the term
with the 7s–7p1/2 energy interval (i.e. 7s–7p1/2 weak-mixing) contributes ap-
proximately 96% to the total amplitude. The energy interval for this term
agrees with experiment to 0.3% (see Table 3.3). Based on comparison with
experimental energies and previous calculations, I expect these amplitudes to
be accurate to around 1%. This accuracy can be improved by including the
Breit [58], neutron-skin [55] and QED [103] corrections, missed high-order cor-
relations such as ladder diagrams [190] (see Table 3.5) and structural radia-
tion [5, 199], and with the use of experimental p-d E1 amplitudes. With these
corrections the theoretical accuracy can reasonably be expected to surpass that
of Cs.

The experimental accuracy can be expected to be high due to stable nuclei
and large PNC signals. Additionally, in the case of Ac2+ where both upper
and lower levels are extremely long-lived, the experimental accuracy has the
potential to be very high.

3.2.4 Experimental accessibility of the parity-violating amplitudes

In order to observe the 7s–6d3/2 PNC transitions in the actinide ions with the
5f5/2 ground states, the 7s state must first be populated. In these ions the 5d3/2

state lies below the 7s state, however it is unstable as it will decay very quickly
via an E1 transition to the 5f5/2 ground state. Population of the 7s state can
be achieved via optical excitation to the 7p1/2 or 7p3/2 levels by a series of E1
transitions (e.g. 5f–6d–7p), a 2γ transition, or an E2 transition, then 7p1/2,3/2

will spontaneously decay to the 7s state via an E1 transition (see Fig. 3.1).
For this method to be viable, several criteria must be met. First, the 7s

state must be metastable and have an appropriate lifetime. Second, the pumping
transition frequencies (to populate 7s) must be in the range of laser spectroscopy.
Also, it is necessary that the de-excitation from the p to s-level is relatively
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Figure 3.1 Level scheme for Th3+ showing one possible pathway to access the relevant PNC transition.

Table 3.12 Energies (ω), transition probabilities (Γ), and spontaneous-emission transition rates (Ar) for
several E1 and E2 transitions for the Th3+ ion.

Transition ω (a.u.) Γ (a.u.) Ar (s−1)

5f5/2 − 6d3/2 E1 0.042 1.46×10−11 6.07×105

6d3/2 − 7p1/2 E1 0.233 7.21×10−9 2.99×108

5f5/2 − 7p1/2 E2 0.274 3.41×10−15 142
7p1/2 − 7s1/2 E1 0.169 7.07×10−9 2.92×108

7p1/2 − 6d3/2 E1 0.233 1.45×10−8 5.97×108

5f5/2 − 7p3/2 E2 0.333 1.96×10−15 81.4
7p3/2 − 7s1/2 E1 0.227 1.66×10−8 6.90×108

7p3/2 − 6d3/2 E1 0.291 2.24×10−9 9.28×107

7p3/2 − 6d5/2 E1 0.267 1.87×10−8 7.30×108

7s1/2 − 6d3/2 E2 0.064 3.57×10−17 1.48
7s1/2 − 6d5/2 E2 0.039 5.57×10−18 0.23

probable compared to transitions to other levels. If this last condition is not
met it is possible to enforce it using stimulated emission, which should not be a
problem since these transitions are optical. All of these criteria should be easily
possible in Th3+ and La2+.

Table 3.12 shows the probabilities and per-second transition rates for these
transitions in Th3+. My calculations are in very good agreement with existing
calculations of Safronova et al. [200, 201]. The 7s state should be relatively
stable, since there are no allowed E1 transitions to lower states. The only
significant contributions to its decay are from E2 transitions to the 6d3/2 and
6d5/2 states. I calculate a long lifetime of 0.58 s, in excellent agreement with the
recent calculation of M. S. and U. I. Safronova of 0.570(8) s [201].
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3.3 Spin-dependent parity violation in s-d transitions

3.3.1 Anapole measurement with a clean extraction?

In the preceding section, I investigated the possibility of using the combination
of the high nuclear charge and simple electron structure that is available in
alkali-like ions to achieve a highly accurate extraction of the nuclear weak charge
(QW ) that could complement, and potentially rival, that derived from Cs. In
this section, however, I focus on another area; the measurement the P -odd
T -even nuclear moment that arises due to parity violation in the nucleus, the
so-called nuclear anapole moment (AM) [13, 14]. As discussed in Sec. 2.4.1,
the experiment [4] of Wieman et al. provides the only measurement of a nuclear
AM to-date. Any new measurements of an AM would prove to be an invaluable
tool in the study of parity violation in the hadron sector, particularly if the
measurement is from a system where the AM is caused by an unpaired neutron
(the AM of 133Cs is due to an unpaired proton).

There is interest in measuring PNC in the 6s–5d5/2 transition in Cs [203],
and the possibility of measuring PNC in this transition in Ba+ and in the
7s–6d5/2 transition of Ra+ has been discussed [204, 205]. In this section, I
perform calculations of this and similar amplitudes for several isotopes of Rb, Cs,
Ba+, Yb+, Fr, Ra+, and Ac2+ with the hope of motivating experiment in this
important area. The s–d5/2 transitions have practically no contribution from the
nuclear weak charge, and thus provide good systems for the clean extraction of
the AM. In Cs, for example, the AM induced contribution to the 6s–7s transition
was only a small percentage of the NSI (QW -induced) contribution. PNC in s-
d transitions of moderately charged ions could potentially be measured using
techniques first put forward by N. Fortson in Ref. [92].

I present order-of-magnitude calculations of NSD PNC amplitudes for the
s–d5/2 transitions of several heavy atoms and ions. These amplitudes, given by
the formula

EPNC =
〈d5/2|dE1|np3/2〉〈np3/2|ĥNSD|s〉

Es − Enp3/2
+
〈d5/2|ĥNSD|np3/2〉〈np3/2|dE1|s〉

Ed5/2 − Enp3/2
,

(3.1)
[the hNSD operator is defined in Eq. (2.5)] are different from the other ampli-
tudes since they only contain intermediate p3/2 states. Also presented are NSD
PNC amplitudes of the s–d3/2 transitions of the same ions (where not presented
previously) that are accurate to the ∼ 10% level.

3.3.2 Calculations and accuracy

In this section, I do not take into account the effect of core polarisation due to
simultaneous action of the weak and E1 fields. This ‘double-core-polarisation’
(DCP) effect is explored in more detail in Ch. 4. Accurate calculations would
require the use of the mixed-states method to calculate the PNC amplitude (see
Appendix A.8), a more numerically stable method based on solving differential
equations, which includes the DCP contribution. However, since high accuracy
is not needed for the NSD PNC, I use simpler approach which is based on a
direct summation over states. Where they exist, I present NSI-PNC amplitudes
alongside the NSD amplitudes. The NSI amplitudes, calculated in the previous
chapter, do include the DCP effect.
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Table 3.13 Percentage variation between the experimental energy intervals (from Ref. [188]) of relevance to
PNC in Cs and calculations in various approximations. Blank means calculated value matches exactly with
experiment by construction.

Interval Σ(2) λΣ(2) Σ(∞) λΣ(∞)

6s1/2 − 6p1/2 6.35 −0.10
6s1/2 − 6p3/2 6.31 0.02
6s1/2 − 7p1/2 4.08 −0.02 0.24 0.08
6s1/2 − 7p3/2 4.08 −0.01 0.24 0.07
5d3/2 − 6p1/2 −5.17 −5.35
5d3/2 − 6p3/2 −7.32 −6.92
5d3/2 − 7p1/2 4.83 −0.05 3.30 0.24
5d3/2 − 7p3/2 4.81 −0.04 3.24 0.20
5d5/2 − 6p3/2 −5.54 −6.02
5d5/2 − 7p3/2 4.28 −0.04 3.02 0.20

To use the direct-summation method, the so-called B-spline technique [206] is
employed to construct the set of single-electron orbitals used for the summation
in Eq. (2.7), as well as for the calculation of the correlation potential, Σ̂. The
states used in the calculation of Σ̂ are linear combinations of the B-splines
which are eigenstates of the HF Hamiltonian (A.12), whereas those used for the
evaluation of Eq. (2.7) are the Brueckner orbitals [eigenstates of the Ĥ0 + Σ̂
Hamiltonian; defined in Eq. (A.19)]. For the summation, 90 B-splines of order
9 are used for each partial wave in a cavity of radius 75 au.

Without any rescaling of the correlation potential (see Sec. 3.2.2) my energies
agree with experiment to around 0.1%-0.5% for most levels, and the important
s-p intervals are reproduced to about 0.3%. In Table 3.4 (page 24) I presented
calculated energy levels for Cs using the second-order (Σ(2)) and the all-order
(Σ(∞)) CPSCI method, both with and without scaling. Table 3.13 presents the
percentage discrepancies for the relevant energy intervals in Cs. This shows
the small effect that scaling has directly on the energies, but the relatively
large improvements it makes on the intervals. The rescaling of the correlation
potential helps to numerically stabilize the results. The rescaling means there is
no significant loss in the accuracy for the energy-levels when using Σ(2) instead
of Σ(∞). This is important for the case of Yb+, where only the second-order
correlation potential was used. Only the second-order method is used for the
Yb+, since the presence of a (full) 4f shell that sits very close to the valence
6s electron means that other missed effects (such as the ladder diagrams) are
comparable in size to the higher-order correlations.

In Table 3.8 (page 26), I compared calculations of several of the relevant E1
reduced matrix elements for Cs with their corresponding experimental values.
My calculations demonstrate very good agreement with experiment, to better
than 0.5% for the lowest s-p transitions, and better than 5% for the transitions
involving d and higher p states. Again, I present calculations using the second-
order (Σ(2)) and the all-order (Σ(∞)) CPSCI method, both with and without
scaling. Importantly, this demonstrates that by including the rescaling of the
correlation potential one can correct for the discrepancies that arise from using
only the second-order correlation potential; effectively meaning that the rescaled
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Table 3.14 Calculated reduced matrix elements (au) for E1 transitions of interest in Ba+ and Yb+ and
comparison with experiment (where available).

Ba+ Yb+

Transition Calc. Exp. Calc. Exp.

6s1/2 − 6p1/2 3.322 3.36(4) [207] 2.705 2.471(3) [208, 209]
6s1/2 − 6p3/2 4.690 4.55(10) [207] 3.817 3.36(2) [210]
5d3/2 − 6p1/2 3.063 3.03(9) [211] 3.094 2.97(4) [208, 209]

3.14(8) [212]
2.90(9) [207]

5d3/2 − 6p3/2 1.338 1.36(4) [211] 1.366
1.54(19) [207]

5d5/2 − 6p3/2 4.127 4.15(20) [211] 4.271

second order correlation potential method is just as good in practice as using
the all-order method.

I present E1 reduced matrix elements for Ba+ and Yb+ in Table 3.14, along
with experimental values for comparison where available. This demonstrates
very good agreement between my calculations and experiment for Ba+, and
reasonably good agreement for Yb+. The discrepancies for the Yb+ values,
on the order of 5% – 10%, are due mainly to the more complicated electron
structure due to the closeness of the 4f14 core shell to the valence 6s state.
The most important E1 transition for the 6s–5d3/2 PNC amplitude in Yb+

is the p1/2–d3/2 transition. This transition corresponds to the weak s–p1/2

mixing, which dominates the amplitude. This p1/2–d3/2 E1 matrix element
agrees with experiment to about 4%. However, for the 6s–5d5/2 PNC amplitude
considered here, the most important E1 amplitudes are the s–p3/2 and p3/2–d5/2

transitions. The s–p3/2 amplitude agrees to only 13% with experiment, and an
experimental value for the p3/2–d5/2 transition is, to the best of our knowledge,
not known.

The accuracy of the weak charge and AM induced PNC interaction matrix
elements relies on the accuracy of the wavefunctions at short distances (near
the nucleus). One way to test the accuracy of the wavefunctions at this dis-
tance scale is to calculate magnetic dipole hyperfine structure constants, which
also depend on the wavefunctions close to the nucleus. The hyperfine structure
constants are typically reproduced very well for s and p states, but not so well
for d states (see, e.g., Ref. [213]). The direct applicability of using hyperfine
structure calculations as a test for p-d hPNC matrix elements has not been fully
investigated. The uncertainty in the calculations of the hyperfine structure con-
stants is dominated by core polarisation, which is much larger for the hyperfine
constants than for the weak matrix elements. The implication of this is that the
accuracy of the s-p PNC interaction matrix elements can be high, and impor-
tantly can be controlled by computing hyperfine constants. For the p-d weak
matrix elements, however, there is no guarantee of high accuracy, and it is not
clear how the accuracy can be reliably judged. In Table 3.15 I present calcula-
tions of magnetic-dipole hyperfine structure constants A, for the 6s and 6p1/2

states of Cs, Ba+ and Yb+, along with experimental values for comparison.
The hPNC interaction, to lowest order, is effectively a contact interaction
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Table 3.15 Calculated magnetic dipole hyperfine constants A (MHz) for the lowest valence states of Cs, Ba+

and Yb+, and a comparison with experiment.

133Cs 135Ba+ 171Yb+

Level Calc. Exp. Calc. Exp. Calc. Exp.

s1/2 2315 2298.2 [214] 3674 3593.3(22) [215] 13202 12645(2) [216]
p1/2 290 291.89(8) [217] 668 664.6(3) [218] 2515 2104.9(13) [216]

and as such only significantly mixes s and p1/2 states. Due to core polarisation,
however, mixing between s and p3/2 states, as well as between p3/2 and d3/2,5/2

states, is not so small. For s-s PNC amplitudes there is nothing to worry about,
since these contain only terms involving s–p1/2 mixing. The s–d3/2 amplitudes
contain also terms involving p-d mixing, however the s–p1/2 mixing is many
times larger, meaning that these amplitudes are dominated by the s–p1/2 mixing
terms, which contribute between 70% and 90% to the total amplitude.

As discussed in the previous section, the accuracy of the NSI amplitudes (s–
d3/2), should be about 1%. This is due to the very good agreement with energy
levels, hyperfine structure constants, and matrix elements. The NSD parts of
the s–d3/2 amplitudes are likely to be somewhat less accurate, due mainly to
core-polarisation effects and the larger number of contributing states (since the
spin-dependent PNC interaction can mix states with ∆J = 1). Because of this,
without the DCP contribution, the accuracy for these amplitudes is likely to be
between 5% and 10%.

For the s–d5/2 amplitudes, there are no s–p1/2 mixing terms, instead there
are terms involving s–p3/2 and p3/2–d5/2 mixing. Due to core-polarisation, there
is no significant difference between the extent of the PNC mixing between these
two contributions, and the size of the respective matrix elements is roughly the
same. For the part of these PNC amplitudes coming from the s–p3/2 mixing,
i.e. the second term in Eq. (3.1), the accuracy is likely to be very good. However,

for the contribution from the 6p3/2–5d5/2 ĥNSD matrix elements the accuracy
will be significantly worse.

There is not enough information to reliably determine how accurate the p3/2–

d5/2 ĥNSD matrix elements are, and as such the s–d5/2 NSD-PNC amplitudes
should be conservatively considered order-of-magnitude estimates. This low
level of accuracy is sufficient for the purpose of the current work, which is to
demonstrate the magnitude and relative sizes of these transitions in different
elements. Note also that the very high accuracy that is required of the NSI-
PNC calculations for the extraction of the nuclear weak charge is not required
in the search for AMs.

In Table 3.16 I compare my calculations of the NSD-PNC amplitudes in Ba+

and Ra+ with several of those available in the literature. The agreement between
results for the s–d3/2 transitions is reasonable. For the s–d5/2 transition, I agree
with calculations of Ref. [204] but not of Ref. [205].

For atoms and ions similar to Yb+, in which an external electron is close to
the core and strongly interacts with its electrons, a different higher-order effect
described by the so-called ‘ladder diagrams’ [190] becomes important. The inclu-
sion of ladder diagrams also significantly improves the accuracy of calculations
in ions, for which the valence electrons lie closer to the core, and improves the
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Table 3.16 Reduced matrix elements 〈Jb, Fb||dNSD||Ja, Fa〉 [defined in Eq. (B.5)] of the spin-dependent PNC
amplitudes of Ba+ and Ra+ and comparison with other works. Units: 10−13κ au.

EPNC

I Transition This work Others

135Ba+ 1.5 〈5d5/2, 3||dNSD||6s, 2〉 0.85 0.82 [204]
0.274 [205]

〈5d3/2, 3||dNSD||6s, 2〉 17.15 19.44 [205]
223Ra+ 1.5 〈6d5/2, 3||dNSD||7s, 2〉 11.4 12.7 [204]

3.504 [205]
〈5d3/2, 3||dNSD||6s, 2〉 210.9 234.690 [205]

accuracy of the d-states for atoms and ions, as discussed in the previous section.
With the inclusion of ladder diagrams, as well as the double-core-polarisation
effect, the accuracy for these calculations can potentially approach the level of
several percent, though this would need further investigation. The accuracy
could then be further improved by including the Breit [58] and QED [68, 103]
corrections, as well as higher order non-Brueckner electron correlations, such as
structure radiation, the weak correlation potential and renormalization of states
(see e.g. Ref. [5, 8, 199, 219]).

3.3.3 Results and discussion

My calculations of the s–d5/2 NSD-PNC amplitudes of several isotopes of Rb,
Cs, Ba+ and Yb+ are presented in Table 3.17, and for Fr, Ra+ and Ac2+ in
Table 3.18. For ease of comparison I present both the reduced matrix elements
[defined in Eq. (B.3) of appendix B.1], and the z-components. The s–d5/2 are
typically between one and two orders of magnitude smaller than the correspond-
ing s–d3/2 transitions, due primarily to the absence of s–p1/2 weak mixing. The
largest amplitudes presented are in Fr, consistent with its very large s-s and
s–d3/2 transitions. The amplitudes are large in fact for all the Fr-like ions, and
are also large in Cs and Yb+.

As well as the s–d5/2 transitions, which have no NSI contribution, I have
also performed calculations for several s–d3/2 transitions for which both NSI
and NSD contributions are non-zero. I express these amplitudes in the form

EPNC = P (1 +R), (3.2)

where P is the NSI-PNC amplitude (including QW ), and R is the ratio of the
NSD to NSI parts. Here, both parts are calculated concurrently, using the same
method and wavefunctions. This approach has the advantage that the relative
sign difference between the NSI and NSD parts is fixed, ensuring no ambiguity
in the sign of κ. There is also typically a significant improvement in accuracy
for the ratio over that for each of the amplitudes individually, due to the fact
that the atomic calculations for both components are very similar and much of
the theoretical uncertainty cancels in the ratio [213].

I present these amplitudes for Rb and Cs in Table 3.19, and for Fr and Ac2+

in Table 3.20. Not presented are amplitudes for Ba+, Yb+, or Ra+, since these
have been performed relatively recently in Ref. [213].
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Table 3.17 NSD-PNC amplitudes of the |5sFa〉 → |4d5/2Fb〉 transition in Rb, and the |6sFa〉 → |5d5/2Fb〉
transitions in Cs, Ba+ and Yb+. Both the reduced matrix elements (RME) and the z components are shown.
Units: 10−13κ au.

EPNC

I Fa Fb RME z-component

85Rb 2.5 2 1 0.224 0.0708
2 2 0.409 0.149
2 3 0.448 −0.0977
3 2 0.219 0.0477
3 3 0.501 0.164
3 4 0.733 −0.122

87Rb 1.5 1 1 0.273 0.112
1 2 0.417 −0.132
2 1 0.122 0.0386
2 2 0.417 0.152
2 3 0.746 −0.163

133Cs 3.5 3 2 3.40 0.743
3 3 5.03 1.65
3 4 4.89 −0.815
4 3 2.91 0.484
4 4 5.78 1.72
4 5 7.71 −1.04

EPNC

I Fa Fb RME z-component

135Ba+ 1.5 1 1 −0.311 −0.127
1 2 −0.475 0.150
2 1 −0.139 −0.0440
2 2 −0.475 −0.174
2 3 −0.850 0.186

171Yb+ 0.5 1 2 −11.3 3.57
173Yb+ 2.5 2 1 −2.67 −0.845

2 2 −4.88 −1.78
2 3 −5.34 1.17
3 2 −2.61 −0.569
3 3 −5.98 −1.96
3 4 −8.75 1.46

Table 3.18 NSD-PNC amplitudes of the |7sFa〉 → |6d5/2Fb〉 transitions in Fr, Ra+ and Ac2+. Units:
10−13κ au.

EPNC

I Fa Fb RME z-component

211Fr 4.5 4 3 24.3 4.05
4 4 32.6 9.72
4 5 29.6 −3.99
5 4 19.7 2.65
5 5 36.3 10.0
5 6 45.8 −5.18

221Fr 2.5 2 1 13.2 4.17
2 2 24.1 8.79
2 3 26.4 −5.76
3 2 12.9 2.81
3 3 29.5 9.65
3 4 43.2 −7.20

223Fr 1.5 1 1 16.1 6.57
1 2 24.6 −7.77
2 1 7.20 2.28
2 2 24.6 8.97
2 3 44.0 −9.59

EPNC

I Fa Fb RME z-component

223Ra+ 1.5 1 1 4.16 1.70
1 2 6.35 −2.01
2 1 1.86 0.588
2 2 6.35 2.32
2 3 11.4 −2.48

225Ra+ 0.5 1 2 14.4 −4.55
229Ra+ 2.5 2 1 3.41 1.08

2 2 6.22 2.27
2 3 6.82 −1.49
3 2 3.33 0.726
3 3 7.62 2.49
3 4 11.2 −1.86

227Ac2+ 1.5 1 1 4.59 1.88
1 2 7.02 −2.22
2 1 2.05 0.650
2 2 7.02 2.56
2 3 12.6 −2.74
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Table 3.19 PNC amplitudes (z components) of the |5sFa〉 → |4d3/2Fb〉 transition in Rb, and the |6sFa〉 →
|5d3/2Fb〉 transitions in Cs. Units: 10−11 au.

QW I Fa Fb EPNC

87Rb
−46.8 1.5 1 0 −0.301× [1 + 0.0805κ]

1 1 −0.337× [1 + 0.0796κ]
1 2 0.261× [1 + 0.0779κ]
2 1 −0.117× [1− 0.0439κ]
2 2 −0.301× [1− 0.0457κ]
2 3 0.301× [1− 0.0483κ]

QW I Fa Fb EPNC

133Cs
−73.2 3.5 3 2 −2.05× [1 + 0.0444κ]

3 3 −3.14× [1 + 0.0431κ]
3 4 1.35× [1 + 0.0412κ]
4 3 −0.923× [1− 0.0305κ]
4 4 −2.86× [1− 0.0323κ]
4 5 1.87× [1− 0.0345κ]

Table 3.20 PNC amplitudes of the |7sFa〉 → |6d3/2Fb〉 transitions in Fr and Ac2+. Units: 10−11 au.

QW I Fa Fb EPNC

223Fr
−128.3 1.5 1 0 −38.4× [1 + 0.0273κ]

1 1 −43.0× [1 + 0.0278κ]
1 2 33.3× [1 + 0.0288κ]
2 1 −14.9× [1− 0.0189κ]
2 2 −38.4× [1− 0.0179κ]
2 3 38.4× [1− 0.0164κ]

QW I Fa Fb EPNC

227Ac2+

−130.1 1.5 1 0 −28.7× [1 + 0.0250κ]
1 1 −32.0× [1 + 0.0241κ]
1 2 24.8× [1 + 0.0223κ]
2 1 −11.1× [1− 0.0105κ]
2 2 −28.7× [1− 0.0123κ]
2 3 28.7× [1− 0.0150κ]

Suitability for measurements A method has been proposed by Fortson
for measuring PNC in a single atomic ion that has been laser trapped and
cooled [92]. Originally proposed with measuring the 6s–5d3/2 transition of Ba+

in mind, work has begun to use this method for the 7s–6d3/2 transition in Ra+

at the KVI institute in the Netherlands [94, 97–100]. The use of this or a similar
method to study spin-dependent PNC in s–d5/2 transitions has been previously
discussed [204, 205]. Though these transitions have significantly smaller PNC
signals than the corresponding s–d3/2 transitions, the main advantage here is
that there is no NSI contribution. This is beneficial for the extraction of the
nuclear AM since the (larger) NSI contribution would not need to be subtracted,
and it would limit the possibility of spurious NSI-PNC acting as a false signal.

In [92] it was shown that to ensure accurate PNC measurements of a single
trapped ion both the upper and lower levels of the transition should be long
lived. The only significant contribution to the decay rate of the 5, 6d5/2 states
in Ba+, Ra+ are the E2 transitions to the s ground state. There are also
M1 and E2 d5/2–d3/2 contributions, though these are highly suppressed. Both
E2 transitions are suppressed in the case of Ac2+, so I include both in the
calculation. I calculate the lifetimes of the relevant d5/2 states in Ba+, Ra+ and
Ac2+ to be 35.9 s, 0.302 s, and 247 s respectively. These results are in good
agreement with other recent calculations, e.g. [95, 220]. The upper states of the
other elements presented here are unstable as they have allowed E1 transitions
to lower levels. This is not a problem for neutral Cs or Fr where atomic-beam-
type experiments could be used.

In the s–d5/2 transitions considered here it is possible that the contribution
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to the amplitude coming from the combination of the weak charge and hyperfine
interaction may not be as small as in other systems, due to the d3/2–d5/2 and
p1/2–p3/2 hyperfine mixing. The ratio of the hyperfine to fine structure splitting
goes as

Zα2me
mp

Z2α2
=

1

Z

me

mp
∼ 10−5. (3.3)

The PNC amplitude of the s–d5/2 transitions due to the combined weak charge
and hyperfine interaction would therefore be of the order

EQW+hf
PNC (s−d5/2) ∼ 10−5EQWPNC(s−d3/2). (3.4)

For Cs, this leads to a QW +hf contribution on the order of 10−16 au (including
QW ), whereas the AM contribution to this transition is 10−13κ au ∼ 10−14 au.
Similarly for Ba+, Fr, and Ra+ the QW +hf contribution is between one and two
orders of magnitude smaller than the contribution from the AM. This is smaller
than the assumed accuracy here, so this contribution can be safely neglected for
now. An accurate calculation of this contribution is beyond the scope of this
thesis.

3.4 Strongly enhanced atomic parity violation due to close
levels of opposite parity

So far, the only observation of a nuclear AM comes from the 133Cs measure-
ment by the Wieman group [4]. The quest for new measurements is also partly
motivated by the requirement to perform an independent test of the existing Cs
result in other systems. This is a very important result and must be checked
even if the accuracy is not improved. Moreover, the systems studied here have
a very large enhancement in the PNC signal, which could make these systems
even more favourable for observing the AM.

Additionally, some isotopes of each of these atoms are believed to exhibit
a very large nuclear enhancement of parity and time-invariance violating ef-
fects [221] (see also [107, 222–224]). Protactinium is a particularly interesting
case in this regard, with a possibility of very close nuclear levels of opposite
parity, which may lead to a huge enhancement in the PNC effects. This is dis-
cussed in more detail in Section 3.4.6. Some isotopes of Fr, Ra and Ac also have
close nuclear levels of opposite parity [222].

In this section, I present calculations of both NSD and NSI PNC effects
that are enhanced by the presence of very close electronic levels of opposite
parity. The AM-induced PNC transition in neutral Ra has been considered
previously [119, 120]. The PNC amplitude between the even ground and 3D2

states was found to be more than 103 times larger than the corresponding 6s–7s
amplitude in Cs. I revisit these calculations in Section 3.4.2, improving the
accuracy and verifying that the PNC signal is indeed greatly enhanced. In
Sections 3.4.3 through 3.4.6 I then proceed to calculate PNC, due both to the
AM and the nuclear weak charge, in Ba, Ac+ (an analogue of Ra), Th, and Pa.

I believe the atoms and ions considered here are very promising candidates
for experimental studies of parity violating nuclear effects. They may also be
used to measure the ratio of weak charges in isotopic chain measurements.
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There are several factors which contribute to the enhancement (or suppres-
sion) of the parity-violating signal in atomic transitions. The first, pointed out
by the Bouchiats [24, 26], is that the PNC amplitude should scale a little faster
than Z3 (Z the atomic number). For this reason it is natural to expect larger
amplitudes in heavy systems. Also, as is clear from Eq. (2.7) [page 7], the ex-
istence of close energy levels of opposite parity has the potential to produce
a very large enhancement. It is with these motivations in mind that I pursue
large PNC signals in the heavy elements chosen for this work. The transitions
studied here have opposite parity levels with energy intervals of ∼ 10 cm−1. For
comparison, the energy interval corresponding to the largest contributing term
of the 6s–7s PNC transition in Cs is ∼ 104 cm−1.

Perhaps the most important and hardest to predict, the final factor is the
size of the weak-interaction matrix element between the opposite-parity states.
The most significant contribution to this comes from s–p1/2 mixing [27]. Finding
large atomic systems with close pairs of opposite parity levels is comparatively
simple, however determining the extent of single-electron s–p1/2 mixing gener-
ally requires complicated many-body calculations. In the heavy atoms studied
here this tends to suppress the final amplitude; e.g., there is a 103 factor en-
hancement from the proximity of opposite parity states, but this does not nec-
essarily transform directly to a 103 enhancement in the amplitude. As well as
this, of course, is the fact that the NSI interaction cannot mix states of different
total angular momentum, and the NSD interaction can only mix states with
∆J = 0, 1 (and J 6= 0→ 0).

Actually, the s–p3/2 and p3/2–d3/2 weak mixing is not insignificant. This
is mainly due to core polarisation, without which these contributions would
be practically zero. This has the benefit of counteracting the suppression due
to limited s–p1/2 mixing, however it makes the calculations very sensitive to
the usually smaller corrections such as correlations and core polarisation. This
makes determining the accuracy particularly difficult, especially in cases for
which the amplitudes are small. If there is only a small amount of s–p1/2 mixing,
then the amplitude becomes very sensitive to core polarisation, and is thus not
particularly accurate, even if E1 amplitudes and energies are reproduced well.
In all cases, the PNC matrix elements are sensitive to configuration mixing.

3.4.1 Calculations and accuracy

To perform the calculations, I make use of the combined configuration inter-
action and many-body perturbation theory (CI+MBPT) method [225], as de-
scribed in Sec. A.7. For the considered atoms and ions with more than two
valence electrons, sometimes a small deviation from the method here described
was necessary. Where I have deviated from this method will be described in the
text.

Interactions with external fields and core polarisation are taken into account
using the time-dependent Hartree-Fock (TDHF) method, see Sec. A.6.1. Note,
however, that I do not take into account the double core polarisation. This
is because here I focus on the NSD amplitudes for which the accuracy of the
analysis is less important (as discussed in Sec. 2.4.1).

I calculate the correlation potential Σ̂1 [see Eq. (A.48) in Sec. A.7] to both
second-order and all-orders in perturbation theory. The difference between cal-
culations using the second- and all-order methods gives a good indication of the
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uncertainty due to missed correlation effects.
Calculation of the PNC amplitude requires a summation of the complete set

of states. I make use of a method based on the Dalgarno-Lewis technique [226]
to perform the summation, as described in Sec. A.8 (without the double core
polarisation). The presence of the small energy intervals leads to a complica-
tion that is resolved by making a minor modification to this method, which is
discussed in the next section.

Calculating PNC with a small energy interval Radium, Ba, and Ac+

have two valence electrons above a closed-shell core. For these relatively simple
systems the above method works quite well. I generate the wavefunctions and
energies using a full CI calculation allowing double valence excitations, with
core-valence correlations taken into account as described above. For Th and
Pa, with more than two valence electrons, I use slight variations of the above
method (discussed in later sections) and do not try to compute the entire sum.
Due to the presence of the very close opposite parity levels, the transitions
in question have a single dominating term, contributing upward of 95% to the
total amplitude. For this reason it is a good first approximation to calculate this
term alone. To do this I calculate the relevant matrix elements of the E1 and
weak interactions including core polarisation, and use the experimental energy
difference to compute the term.

For Ba, Ra and Ac+, a determination of the whole amplitude is required. A
problem that occurs though is that the existence of the close levels makes this
method numerically unstable. Even if the energy levels are computed to very
high accuracy, the relevant energy interval may be very wrong. For example,
the experimental energy interval between the even 3D2 and the odd 3P1 levels
in Ra is 5.41 cm−1. My calculations for the energies of these states vary from
experiment by just 5% and 1% respectively, however, I calculate this interval to
be 828 cm−1. This would lead to an error of several orders of magnitude. There
are three methods one can use to remedy this.

The first and simplest method is to rescale the single-electron correlation
potential, i.e. Σ̂1 → λΣ̂1 in Eq. (A.48). Different parameters are used for each
of the orbital angular momentum states (s, p etc.), and are chosen to reproduce
the relevant experimental energy interval exactly. For Ra, the ionisation energy
of the the ground state was also made to match exactly with experiment in
this way. It is worth noting that these scaling parameters are close to unity,
indicating the already reasonable accuracy. For Ra the parameters chosen were
λs = 0.994, λp = 1.046, and λd = 0.893. For Ac+ they were λs = 0.957,
λp = 1.016 and λd = 0.917, and for Ba they were λs = 1.010, λp = 0.897, and
λd = 0.933.

The second approach is not to perform any re-scaling of Σ, but to use orthog-
onality conditions in the summation to extract the dominating term, and rescale
it by a factor ∆ECalc./∆EExp.. To do this, the intermediate states in Eq. (A.53)
temporarily forced to be orthogonal to the state causing the dominating term;
then the amplitudes are computed using these ‘intentionally incomplete’ states.
This is made more clear by considering a PNC transition a → b, which is
enhanced by the proximity of the state |x〉 to the state |b〉. The total PNC
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amplitude can then be expressed

Ea→bPNC =

non-dominating term︷ ︸︸ ︷
〈b|d̃E1|δa〉+ 〈δb′|d̃E1|a〉+

‘main’ dominating term︷ ︸︸ ︷
〈b|h̃PNC|x〉〈x|d̃E1|a〉

Eb − Ex
, (3.5)

where the dashed states, |δb′〉, are the intentionally incomplete states—i.e. solu-
tions to the mixed-states differential equation (A.53) with the condition enforced
that they be orthogonal to the state causing the dominating contribution (in
this example, |x〉). By comparing the results computed both with and without
enforcing the orthogonality conditions, I can separate this ‘main’ term from the
sum and proceed to re-scale it.

The third method is to separate the non-dominating term in the same way
as above. This time, instead of re-scaling the dominant term, it is discarded
and re-calculated “directly”, by which I mean the E1 and PNC matrix elements
are calculated separately, and combined with the experimental energy interval.
This term is then added to the non-dominating tail to form the total PNC
amplitude.

If good agreement exists between these three methods it is indicative of
good numerical accuracy, and also of sufficient completeness in the basis. This
is exactly what I find.

In Table 3.21 I present my calculated energy levels for Ba, Ra and Ac+ along
with experimental values for comparison. I present calculations using both the
unscaled correlation potential (column Σ) as well as the calculations including
the rescaled potential (column λΣ). Here I have chosen the scaling parameters
to reproduce the energies of the relevant close opposite parity levels, as opposed
to with achieving good overall accuracy in mind. The unscaled energies for
Ba and Ra are already very good, and in most cases this scaling improves the
accuracy.

For Ac+ the agreement with unscaled energies is not as good, however it
should be noted that the intervals between levels are reproduced to a much
better accuracy than the levels themselves, indicating most of the error is likely
associated with determining the ground state energy. In this case the rescaling
improves the accuracy for all levels.

Testing the method and accuracy Ytterbium, like Ba, Ra and Ac+ has
two valence electrons above a closed shell core. The parity violating 6s2 1S0 →
6s5d 3D1 transition has contributions from both the NSI and NSD parts of the
PNC Hamiltonian, and is enhanced by the proximity of the odd 6s6p 1P o1 level
to the upper 3D1 level in the transition. The energy interval between these
levels is just 579 cm−1. Though not as small as the other intervals studied
in this work, it still means this transition in Yb has a large dominating term,
contributing more than 80% to the total amplitude. Several calculations exist
in the literature for parity nonconservation in neutral Yb [40, 87, 88, 227–229].
Therefore studying PNC in this transition for Yb will serve as a useful test for
the method.

Table 3.22 presents calculations of both the NSI and NSD parts of the PNC
amplitude for this transition in Yb, and compares these values with those calcu-
lated in several other works, and demonstrates very good agreement. I present
calculations using both methods described above; that is using a scaled corre-
lation potential (λΣ) that is chosen to reproduce exactly the energy interval of
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Table 3.21 Comparison of calculated energy levels ( cm−1) with experiment (Ref. [188]) for Ba, Ra and Ac+.

Calc.
Atomic State Σ λΣ Exp.

Ba 6s2 1S0 0 0 0
5d6s 3D1 8180 8684 9034

3D2 8368 8865 9216
3D3 8765 9243 9597

5d6s 1D2 10772 11309 11395
6s6p 3P0 12387 12677 12266

3P1 12748 13031 12637
3P2 13617 13877 13515

6s6p 1P1 17737 18080 18060
5d2 3F2 19669 20605 20934

3F3 20007 20928 21250
3F4 20409 21314 21624

5d6p 3F2 21242 22015 22065
3F3 22121 22866 22947
3F4 22955 23675 23757

5d2 1D2 22216 23062a 23062
5d6p 1D2 22320 23074a 23074
5d2 3P0 22086 22949 23209

3P1 22340 23199 23480
3P2 22895 23727 23919

a Levels match experiment exactly, by construction

Calc.
Atomic State Σ λΣ Exp.

Ra 7s2 1S0 0 0 0
7s7p 3P0 13285 13102 13078

3P1 14170 13999a 13999
3P2 16835 16694 16689

6d7s 3D1 13079 13756 13716
3D2 13342 13994a 13994
3D3 14067 14642 14707

6d7s 1D2 16742 17318 17081
7s7p 1P1 20487 20432 20716
7s8s 3S1 26691 26658 26754

Ac+ 7s2 1S0 0 0 0
6d7s 3D1 3917 4355 4740

3D2 4406 4836 5267
3D3 6579 6911 7427

6d7s 1D2 8403 8886 9088
6d2 3F2 12023 12849 13236

3F3 13762 14557 14949
3F4 15644 16281 16757

6d2 3P0 16250 17039 17737
3P1 17530 18290 19015
3P2 21615 22199a 22199

6d2 1D2 18053 18773 19203
6d2 1G4 20692 20804 20848
7s7p 3P0 21453 21048 20956

3P1 22550 22181a 22181
3P2 28612 28328 26447
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Table 3.22 Calculations of the NSI (including QW ) and NSD parts of the 1S0 (F=1/2)→ 3D1 (F=1/2) PNC
amplitude (z compnent, Fz=0) for 171Yb (I=1/2) and comparison with other works. The signs have been
omitted. Units: 10−11 iea0

This work Others
λΣa Orthog.b Value Ref.

NSI-PNC 62.5 59.0 60 [88]
61.8 [227]
41.6 [228]
61.5 [40]

NSD-PNC 1.01κ 0.965κ 1.12κ [87]
0.997κ [229]
0.990κ [40]

a Scaling correlation potential to reproduce the energy interval
b Using orthogonality conditions to subtract and re-scale the

dominating term by factor ∆ECalc./∆EExp.

Table 3.23 Comparison of calculated and experimental magnetic hyperfine structure constants, A (MHz), for
low-lying states of 137Ba.

6s5d 3D1 6s5d 3D2 6s6p 3P o1

This work −528 373 1216
Experiment −521 [230] 416 [230] 1151 [231]

the dominating term, and also using the orthogonality conditions to extract the
dominating contribution and then re-scaling it for the experimental interval.

In Table 3.23, I present the magnetic hyperfine structure constants, A, for
the low-lying states of Ba along with experimental values for comparison. I
include states dependent on the s and p single-electron wavefunctions, as these
states dominate in the PNC interaction. The PNC matrix elements depend on
the value of the wavefunction at short distances, as do the hyperfine structure
constants. Thus, good accuracy is demonstrated for the important s and p
wavefunctions near the nucleus.

To form an estimate of the uncertainty, I perform the calculations for Ra,
Ba, and Ac+ using both the all-order and second-order correlation potentials,
as described above. The difference between these methods leads to about a
10% difference in the PNC amplitudes. Taking this into account, I conserva-
tively expect the accuracy of the PNC calculations to be around 20% for Ra,
Ba, and Ac+. For Th and Pa, with a more complicated electron structure and
less experimental data, it is harder to tell. Until a more detailed analysis can
be performed these calculations should be considered order-of-magnitude esti-
mates, which is more than sufficient for now. The accuracy of these CI+MBPT
calculations can be improved as more experimental data becomes available.

3.4.2 Radium

Here, I study two relevant transitions for measuring PNC in Ra, the 7s2 1S0 →
6d7s 3D2 transition, and the 7s2 1S0 → 6d7s 3D1 transition. Both transitions
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are in the optical range (λ ∼ 700 nm) and are enhanced by the proximity of the
odd 7s7p 3P1 level to the upper levels in the transitions.

There are several isotopes of Ra that have non-zero nuclear spin, required
for measuring the AM. The nuclear spin of Ra is caused by a valence neutron,
which makes these transitions especially interesting for the study of the neutron–
nucleus parity violating potential [13, 14, 48]. The only measurement of an AM
so far is for 133Cs, which has only a valence proton [4].

In Table 3.24, I present calculations of reduced matrix elements of operators
of interest for the E1, NSI-PNC and NSD-PNC interactions. My calculations
of the E1 matrix elements, as well as the energy levels (in Table 3.21), agree
well with previous calculations, e.g., Ref. [232, 233].

One can use the relevant values of the E1 and AM matrix elements to deter-
mine the amplitude of the dominating term of the PNC transition. Note that
in Table 3.24 I present only the “electron-part” of the operators, without any
additional factors. For example, the formula linking the matrix elements of γ5ρ
to the NSI-PNC interaction is

〈b||ĥNSI||a〉 =
GF

2
√

2
(−QW )〈b||γ5ρ||a〉.

I present reduced matrix elements due to their lack of dependence on the pro-
jection of angular momentum; the NSD-PNC matrix elements also depend on
nuclear spin. The reduced matrix elements obey the symmetry condition

〈a||ĥ||b〉 = (−1)Jb−Ja〈b||ĥ||a〉∗,

where the asterisk stands for complex conjugation and results in a change of
sign for the PNC matrix elements but not for the E1 matrix elements. Also
note that the actual matrix elements contain factors depending on the different
angular momentum values, for example, the NSI-PNC matrix element contains
the Wigner 3j symbol that has a term 1/

√
2J + 1, which makes these reduced

matrix elements appear larger for large values of J . Full formulas are given in
Appendix B.1.

The dominating contribution to the 1S0 − 3D2 transition is given by:

EFa→FbPNC ' kNSD
〈3D2||αρ||3P o1 〉〈3P o1 || − er||1S0〉

E(3D2)− E(3P o1 )
, (3.6)

where kNSD is the coefficient (for the z component),

kNSD =
GF√

2
κ
√

(I + 1)(2I + 1)(2Fb + 1)(2Fa + 1)/I × (−1)Fb−Fz
(
Fb 1 Fa
−Fz 0 Fz

)
× (−1)Fb−Fa

{
Jn Jb 1
I I Fb

}{
Jn Ja 1
Fa Fb I

}
(3.7)

[see equations (B.3) and (B.5) in Appendix B.1]. Here Fz = min(Fa, Fb), and
the index n refers to the intermediate state.

Due to the large dominating term in the transitions in Ra this gives a good
first approximation, and was the method used in the earlier works [119, 120].
We, however, proceed to calculate the entire sum (with the mixed-states ap-
proach), using the rescaled correlation potential method to deal with the nu-
merical sensitivity due to the close opposite parity levels, as discussed above.
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Table 3.24 Reduced matrix elements 〈a||Ĥ||b〉 (au) for the E1, NSI-PNC and NSD-PNC amplitudes between
the lowest few states of Ra. No value means forbidden by selection rules.

Even state Odd state Hab
a b −era γ5ρ

b αρc

7s2 1S0 7s7p 3P0 −22.8
3P1 1.22 46.4
1P1 −5.49 −12.3

7s6d 3D1 7s7p 3P0 2.99 3.36
3P1 −2.57 4.13 −5.45
3P2 −0.688 −1.77
1P1 −0.440 −9.15 4.74

a For E1 matrix element
b For NSI-PNC martrix element
c For NSD-PNC martrix element

Even state Odd state Hab
a b −er γ5ρ αρ

7s6d 3D2 7s7p 3P1 4.38 −2.21
3P2 2.60 −4.31 0.656
1P1 0.797 6.44

7s6d 3D3 7s7p 3P2 −6.35 8.11
7s6d 1D2 7s7p 3P1 −0.353 −4.68

3P2 −0.519 −5.24 −5.24
1P1 −3.23 −13.5

Table 3.25 Comparison of the different methods of determining the dominating term of the PNC amplitudes
for 225Ra.

NSD-PNC units: 10−10κ iea0

Orthog.a

λΣb Σc Directd
1S0F=0.5 → 3D2F=1.5 5.708 5.873 5.706
1S0F=0.5 → 3D1F=1.5 0.1551 0.1557 0.1551

NSI-PNC units: 10−10(−QW /N)iea0

1S0 → 3D1 13.67 14.00 13.75

a Subtracting the dominating term using orthogonality conditions
b Scaling the correlation potential to reproduce energy interval
c Re-scaling dominating term by ∆ECalc./∆EExp.

d Calculate dominating term directly using Eq. (3.6)

Table 3.25 compares the three different methods of determining the dominating
contribution to the amplitude as described above. There is very good agreement
between these approaches, indicating good numerical accuracy in the calcula-
tions.

The 1S0 − 3D2 transition is of particular interest for the potential measure-
ment of the AM. It is enhanced by very close levels of opposite parity, the
interval between the upper 3D2 state and the odd-parity 3P1 state is just 5.41
cm−1, and there is no NSI contribution. This leads to a huge enhancement
in the parity violating signal caused by the interaction of the valence electrons
with the AM of the nucleus.

Calculations of the PNC amplitudes between the different hyperfine com-
ponents for this transition are presented in Table 3.26. I have performed the
calculation of the entire sum, as opposed to just the leading term as was done
in [120]. This amplitude is very large indeed, several orders of magnitude larger
than the NSD amplitudes in Cs.

My value is about twice as large as the value calculated in Ref. [120]. I be-
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Table 3.26 NSD-PNC amplitudes (z components) for the 1S0 → 3D2 transition in Ra, with Fz=min(Fa,Fb).
There is no NSI contribution to this transition. Units: 10−10iea0 κ

I Fa Fb This work Ref. [120]

1.5 1.5 0.5 −1.39 −0.57
1.5 −3.35 −1.37
2.5 3.13 1.28

0.5 0.5 1.5 5.92 2.42

Table 3.27 Effect of the CI basis on the matrix element 〈3P1||αρ||3D2〉 in Ra and comparison with Ref. [120].

CI-Method A B C Full Ref. [120]
〈a||αρ||b〉 0.90 1.18 1.48 2.21 1.10

A: Allowing only single excitations from the main reference configuration: 7s2 for 3D2 and 7s7p for 3P1

B: Allowing only single excitations from two reference states: 7s2 and 6d7s for 3D2, and 7s7p and 6d7p for 3P1

C: Allowing double excitations, but with a reduced basis

Full: Allowing double excitations with the full basis (final value)

lieve this is mainly due to the effect of the basis used for the wavefunctions on
the matrix elements of the NSD-PNC interaction. Only a minimal number of
single-electron basis states calculated in a V N potential were used in Ref. [120].
The use of the V N approximation in Ref. [120] allowed the authors to attain
reasonable accuracy for the wavefunctions without saturating the basis. In this
thesis, however, I use a complete set of single-electron states calculated in the
V N−2 potential. In this case, the single-electron orbitals are initially quite dif-
ferent from those in the neutral atom. However, high accuracy of the results is
achieved when the basis is saturated by allowing all single and double excita-
tions from the initial reference configuration. The best correspondence between
two methods is achieved when only single excitations are allowed in the V N−2

potential. Single excitations correct the orbitals calculated in the V N−2 poten-
tial making them close to those calculated in the V N potential. In Table 3.27 I
present calculations of the reduced matrix elements of the αρ operator (which
are proportional to the NSD-PNC matrix elements) using several different basis
configurations, and demonstrate that by using wavefunctions similar to those
used in [120] it is possible to account for the difference between the value de-
termined in this work and that of Ref. [120]. Note that this change in the
wavefunctions makes only a much smaller difference to the energy levels (∼ 5%)
and E1 matrix elements (∼ 10%).

The measurement of the AM of 133Cs was achieved by comparing measure-
ments of the PNC amplitude, which contained contributions from both the
NSD and NSI parts, between different hyperfine components [4]. The consid-
ered transition in Ra, however, offers the possibility to measure the effect of
the AM directly, which may be more efficient due both to the the much larger
amplitude and to the fact that the the NSI interaction does not contribute in
this case at all due to the large change in total electron angular momentum
∆J = 2.

As well as the 1S0 − 3D2 transition, which has no NSI contribution, I have
also performed calculations for the 1S0−3D1 transition, for which both NSI and
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Table 3.28 PNC amplitudes (z components) for the 1S0 → 3D1 transition in Ra. Units: 10−10iea0

QW I Fa Fb EPNC

223Ra
−127.0 1.5 1.5 0.5 −6.71× [1− 0.0402κ]

1.5 −9.00× [1− 0.0161κ]
2.5 7.35× [1 + 0.0241κ]

QW I Fa Fb EPNC

225Ra
−129.0 0.5 0.5 0.5 −6.81× [1− 0.0475κ]

1.5 9.64× [1 + 0.0237κ]

NSD contributions are non-zero. This transition is also enhanced due to close
levels of opposite parity, though not to the same extent. The interval between
the even 3D1 state and the odd 3P1 states is 283.53 cm−1.

These amplitudes are presented in Table 3.28. I express the amplitudes in
the form

EPNC = P (1 +R), (3.8)

where P is the NSI-PNC amplitude (including QW ), and R is the ratio of the
NSD to NSI parts. Here I calculate both parts concurrently, using the same
method and wavefunctions. This approach has the advantage that the relative
sign difference between the NSI and NSD parts is fixed, ensuring no ambiguity in
the sign of κ [40]. There is also typically a significant improvement in accuracy
for the ratio over that for each of the amplitudes individually, due to the fact
that the atomic calculations for both components are very similar and much of
the theoretical uncertainty cancels in the ratio [213].

The z component (Jz=0) of the F -independent electron part of the NSI-PNC
amplitude (defined in Appendix B.1.3) for the 1S0− 3D1 transition in 223Ra is:

EPNC(223Ra) = 12.4× 10−10(−QW /N) iea0, (3.9)

an order of magnitude larger than the 7s–8s transitions in Fr and Ra+, and
about twice as large as the 7s–6d3/2 transitions in Fr and Ra+ (see Section 3.2)
and the 1S0 − 3D1 transition in Yb (see, e.g. [40]).

3.4.3 Barium

Barium, like Ra, has two valence electrons above a closed shell core, and I
proceed with the calculations in the same way. Calculations of the reduced
matrix elements of interest to PNC studies are presented in Table 3.29 (energies
for Ba are presented in Table 3.21). The energies and E1 transition amplitudes
agree reasonably with previous calculations, e.g., Ref. [233].

There are two transitions of interest in Ba that are enhanced by the presence
of close levels of opposite parity. The first is between the meta-stable 5d6s 3D1

and the upper 5d2 1D2 even states. Both NSI and NSD-PNC parts of this
amplitude are enhanced by the proximity of the odd 5d6p 1Do

2 state to the
upper state of the transition, with an interval of 12.34 cm−1.

Calculations of the NSI and NSD contributions to the 3D1 − 1D2 PNC
amplitude for Ba are presented in Table 3.30. I present these amplitudes in the
form EPNC = P (1 + R), as described above. The z component (Jz=1) of the
F -independent NSI-PNC amplitude for this transition is:

EPNC(135Ba) = −3.55× 10−10(−QW /N) iea0, (3.10)
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Table 3.29 Reduced matrix elements 〈a||Ĥ||b〉 (in au) for the E1 (−er), NSI-PNC (γ5ρ), and NSD-PNC (αρ)
amplitudes between the relevant states of Ba. No value means identically zero due to selection rules.

Even state Odd state Hab
a b −er γ5ρ αρ

6s2 1S0 6s6p 3P0 2.02
3P1 −0.510 −4.12
1P1 5.50 1.62

5d6s 3D1 6s6p 3P0 −2.34 −0.376
3P1 2.03 −0.245 0.675
3P2 0.532 0.335
1P1 0.081 1.07 −0.309

5d6p 3F2 4.23 3.89
1D2 −2.72 −0.147

Even state Odd state Hab
a b −er γ5ρ αρ

5d6s 3D2 6s6p 3P1 −3.48 0.171
3P2 −2.03 0.291 −0.494
1P1 −0.461 −0.518

5d6p 3F2 2.88 2.61 3.80
1D2 0.372 0.675 −0.811
3F3 −5.97 −1.76

5d2 1D2 6s6p 3P1 1.26 0.815
3P2 −1.62 1.29 1.55
1P1 −2.58 1.08

5d6p 3F2 −0.899 −0.020 −0.427
1D2 −2.49 −0.085 −0.356
3F3 0.061 −0.165

Table 3.30 PNC amplitudes (z components) for the 3D1 → 1D2 transition in Ba. Units: 10−10iea0

QW I Fa Fb EPNC

135Ba −74.0 1.5 0.5 0.5 2.48× [1 + 0.144κ]
1.5 −2.48× [1 + 0.0945κ]

1.5 0.5 1.11× [1 + 0.1476κ]
1.5 2.66× [1 + 0.0977κ]
2.5 −2.49× [1 + 0.0145κ]

2.5 1.5 0.543× [1 + 0.1031κ]
2.5 2.18× [1 + 0.0199κ]
3.5 −2.51× [1− 0.0966κ]

despite some suppression due to the small value of the NSI-PNC matrix element,
it is still large.

The other transition is from the meta-stable 5d6s 3D2 state to the same
upper 5d2 1D2 even state. As with the first transition, both the NSI and NSD
parts of this amplitude are enhanced by the proximity of the odd 5d6p 1Do

2

state to the upper state of the transition, with the same 12.34 cm−1 interval.
However, in this case there is a second dominating term that contributes to
the NSD-PNC amplitude only. This contribution comes from the odd 5d6p 3F3

state, and is enhanced by an energy interval of 114.6 cm−1.
The fact that there are two dominating terms to this transition makes this

case potentially more difficult numerically – the experimental energy intervals
for both leading terms cannot be simultaneously reproduced with the same set
of scaling parameters for the correlation potential. I proceed in this case using a
mixture of the two above described methods; I use the same correlation poten-
tial scaling parameters as for the 3D1 − 1D2 transition (reproducing the 12.34
cm−1 interval exactly), and then enforce orthogonality conditions to separate
off the remaining dominating term and rescale it for the 114.6 cm−1 experi-
mental interval. As a test of the numerical accuracy I in fact separate off both
dominating terms using the orthogonality conditions and compare them to the
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Table 3.31 PNC amplitudes (z components) for the 3D2 → 1D2 transition in Ba. Units: 10−10iea0

QW I Fa Fb EPNC

135Ba −74.0 1.5 0.5 0.5 −0.233× [1 + 0.161κ]
1.5 −0.233× [1 + 0.190κ]

1.5 0.5 −0.233× [1 + 0.144κ]
1.5 −0.279× [1 + 0.0753κ]
2.5 −0.174× [1 + 0.146κ]

2.5 1.5 −0.174× [1 + 0.0686κ]
2.5 −0.366× [1− 0.0179κ]
3.5 −0.115× [1 + 0.0724κ]

3.5 2.5 −0.115× [1− 0.0360κ]
3.5 −0.466× [1− 0.131κ]

values calculated directly using the matrix elements from Table 3.29 and the
experimental intervals. I find excellent agreement between these values, within
0.3% for the NSI part and better than 0.1% for the NSD part, and conclude that
the numerical accuracy is good. Calculations of the 3D2 − 1D2 PNC amplitude
for 135Ba are presented in Table 3.31, and the z component (Jz = 2) of the
NSI-PNC amplitude for the 3D2 − 1D2 transition for Ba is:

EPNC(135Ba) = −0.497× 10−10(−QW /N) iea0, (3.11)

relatively small compared to the other transitions studied in this work (though
still larger than the measured Cs amplitude).

While there are possible PNC transitions from the ground state, they are
not enhanced. The 3D1 state is practically stable with no allowed E1 or E2
transitions to the ground state, the only lower state. I calculate the lifetime
of this state to be 4 × 106 s. For the 3D2 state, which has only a significant
contribution from an E2 transition to the ground state, I calculate a lifetime of
70 s, which agrees very well with the value of 69 s calculated in Ref. [232].

Though the here considered amplitudes are smaller than those in Ra, and
despite the fact that the enhanced amplitudes are not from the ground state,
there are advantages to working with Ba. The 135Ba and 137Ba nuclei, each with
nuclear spin I = 3/2, are stable. There are obvious benefits to this over work-
ing with radioactive elements. Also, despite the smaller amplitudes and likely
smaller nuclear enhancement (i.e. smaller κ) than in Ra, the ratio of the NSD
to NSI parts is very large for transitions between some hyperfine components.
This is due to small values for the NSI-PNC matrix element of the dominating
terms (see Table 3.29), which suppresses the NSI part of the amplitudes.

The transitions from the ground state, namely the 1S0−3D1, the 1S0−1D2,
and the 1S0 − 3D2 transitions, may themselves in fact be promising options
for searching for PNC. As well as searching for the AM by measuring PNC
between different hyperfine components, each of the NSI transitions in Ba could
be used for measurements of PNC in a chain of isotopes. There is currently much
interest in this type of measurement, in particular for Yb [40, 87, 88, 227–229],
where measurements have already been performed [36], and are continuing [85].
The atomic PNC amplitude in Yb constitutes the largest yet observed in any
system. The NSI-PNC transitions in neutral Ba are of particular interest in this
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Table 3.32 Reduced matrix elements 〈b||Ĥ||a〉 (au) of the amplitudes between the lowest few states of Ac+.
No value means forbidden by selection rules.

Odd state Even state Hba

a b −er γ5ρ αρ

7s7p 3P0 7s2 1S0 45
6d7s 3D1 −1.8 5.6
6d2 3P0 5.2

3P1 −0.50 0.029

Odd state Even state Hba

a b −er γ5ρ αρ

7s7p 3P1 7s2 1S0 1.7 −85
6d7s 3D1 1.7 16 −15

3D2 2.2 14
1D2 −0.10 3.1

6d2 3F2 0.56 −3.3
3P0 0.66 12
3P1 −0.42 1.6 −1.5
3P2 0.40 −4.2
1D2 0.82 −4.7

area. Like Yb, Ba has many stable isotopes, with both even and odd-nucleon
numbers, that are significantly spread out. The 3D1− 1D2 NSI-PNC amplitude
in Ba is about half the size of the 1S0 − 3D1 transition of Yb, though the NSD
contribution for Ba is several times larger than that for Yb.

3.4.4 Actinium II

The Ac+ ion has a ground state configuration very similar to that of Ra, and
thus the calculations can be approached in the same way. Here, the transition
of interest is the 7s2 1S0 → 6d2 3P2 transition, for which there is no NSI contri-
bution. This transition is enhanced by the proximity of the odd 7s7p 3P1 level
to the even 6d2 3P2 level, with an energy interval of 18.93 cm−1.

In Table 3.32 I present calculations of the relevant reduced matrix elements
for Ac+, and in Table 3.33 I present z components of the NSD-PNC amplitudes.
These amplitudes are almost as large as the corresponding 1S0−3D2 transitions
in Ra. Despite the difficulties of working with ions, it is possible that there
are advantages in using actinium. The 227Ac nucleus has a half life of 22 yr,
much longer than the 42 min half-life of the most stable odd-nucleon Ra isotope
(227Ra) or the 22 min of the most stable Fr isotope (223Fr).

This transition in Ac+ could be measured using a similar method to that
put forward by Fortson in Ref. [92] for measuring PNC in single ions that have
been laser trapped and cooled. The upper 6d2 level of the transition should be
relatively stable, a condition for accuracy in this method, since the only allowed
E1 transition to a lower level is suppressed by the small interval 18.93 cm−1.
Including all E1, E2 and M1 transitions to lower levels, I calculate the lifetime
of this state to be about 0.2 s.

3.4.5 Thorium

Thorium has four valence electrons. Full-scale accurate calculations for this
atom are beyond the scope of the present work, however I use the same meth-
ods outlined above (using a V N−4 potential; see Appendix A.7) to perform
preliminary calculations here also.
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Table 3.33 NSD-PNC amplitudes (z components) for the 1S0 → 3P2 transition in Ac+. There is no NSI
contribution to this transition. Units: 10−10iea0 κ

I Fa Fb EPNC

227Ac+ 1.5 1.5 0.5 1.05
1.5 2.51
2.5 −2.35

231Ac+ 0.5 0.5 1.5 −4.44

To perform the calculations of the PNC amplitudes I calculate only the dom-
inating contribution using the matrix elements of the PNC and E1 interactions,
without trying to evaluate the entire sum. For the wavefunctions I include the
eight leading configurations and from these allow single excitations. This pro-
vides a fair compromise between completeness of the wavefunctions and ease
of computation. Here I include correlation corrections, but I calculate these
to second order in MBPT only. I also do not perform any re-scaling of the
correlation potential. This is because the uncertainty here is dominated by the
completeness of the basis, not by the effect of the correlation potential. I have
performed calculations of several energy levels of interest to PNC in Th. These
are presented in Table 3.34 (note that this is not a comprehensive list of states;
the Th spectrum is very dense). Despite the lower level approximation for the
more complex system the agreement is reasonably good, particularly for the
lower states. Calculations of the relevant E1 and PNC reduced matrix elements
are presented in Table 3.35.

It is worth noting that for Th (and also for Pa) the configuration mixing is
very large, particularly for the higher states. The configurations given in Ta-
bles 3.34 and 3.35 are the leading configurations (taken from Ref. [189]), but
other contributing configurations are important as well. For example, the NSI-
PNC (γ5ρ) reduced matrix element between the 6d7s27p 3D3 and 6d27s2 3F3

states is rather large (see Table 3.35), which is unexpected since the leading con-
figurations suggest this transition is essentially a single-electron p-d transition.
(This particular matrix element does not contribute to the PNC amplitude stud-
ied here.) However, due to the large configuration mixing this matrix element
also has a large contribution coming from single-electron s-p mixing, enhancing
this amplitude. The extent of this mixing is detrimental to the accuracy of the
calculations, especially when the overall accuracy is not high, since even rela-
tively small errors in the calculated configurations may lead to large errors in
the weak matrix elements. Fortunately, the weak matrix elements of relevance
to the PNC amplitudes studied here are relatively stable in this regard. Still,
this is a large contributing factor to the low accuracy for these calculations in
Th and Pa.

Thorium has several isotopes of non-zero nuclear spin, e.g., 227Th with I =
1/2, 225Th with I = 3/2, and 229Th with I = 5/2. The most long-lived of these
is 229Th, which has a half-life of about 7300 yr, and the most stable Th isotope
is 232Th, which has zero nuclear spin and a half life of 1.4×1010 yr. The nuclear
spin of Th is produced by a valence neutron. There are two interesting PNC
transitions in Th that are enhanced by close opposite parity levels.

The first is a transition between the meta-stable 6d27s2 3F4 state and the
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Table 3.34 Calculated energy levels for Th and comparison with experiment (Ref. [189]). Units are cm−1.

Statea Calc. Exp.

6d27s2 3F2 0 0
3P0 2546 2558
3F3 3168 2869
1P2

b 4120 3688
3P1 3926 3865
3F4 5650 4962

6d37s 5F1 5257 5563
5F2 6232 6362
3H4 18358 15493
3F3 18536 17398

5f6d7s2 3Go5 18846 15490
6d7s27p 3Do

3 20190 17411

a Not a comprehensive list of states
b Term determined in this work

Table 3.35 Reduced matrix elements 〈b||Ĥ||a〉 of the amplitudes between the relevant states of Th. (a.u.)

Odd state Even state Hba
a b −er γ5ρ αρ

6d7s27p 3D3 6d27s2 3F2 −0.17 −14
3F3 −0.20 −47 2.8
3F4 −0.51 −32

6d37s 3H4 −0.01 −7.1
3F3 0.15 −0.37 4.5

Odd state Even state Hba
a b −er γ5ρ αρ

5f6d7s2 3G5 6d27s2 3F4 1.7 53
6d37s 3H4 0.14 2.9
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higher 6d37s 3H4 state, which is induced by the nuclear AM. This transition is
enhanced by the extremely small 3.1 cm−1 energy interval between the 5f6d7s2 3Go5
state and the 3H4 state. This transition is given by

EPNC ' kNSD
〈3H4||αρ||3Go5〉〈3Go5|| − er||3F4〉

E(3H4)− E(3Go5)
, (3.12)

where the factor kNSD is given in Eq. (3.7). The NSD-PNC amplitudes between
various hyperfine components for this transition are given in Table 3.36. There
is also a NSI contribution to this transition, though it is not enhanced by the
proximity of opposite parity levels and doesn’t contain a single dominating term.
It is likely between one and two orders of magnitude smaller than the NSD
contribution, below the current level of accuracy.

The second transition of interest in Th is between the ground 6d27s2 3F2

state and the higher 6d37s 3F3 state. This transition is enhanced by a 12.8 cm−1

energy interval between the 6d7s27p 3Do
3 state and the 3F3 state, and has con-

tributions from both the AM and the nuclear weak charge. The amplitudes
for this transition are presented in Table 3.37, where, as for Ra, I present the
amplitudes in the form EPNC = P (1 + R). Note that the ratio of the NSD
contribution to the NSI contribution is significantly larger for Th than for Ra.

The z component (Jz=2) of the NSI-PNC amplitude for the (F -independent)
3F2 − 3F3 transition in 232Th is calculated to be

EPNC(232Th) = 9.9× 10−11(−QW /N) iea0. (3.13)

There is no NSD-PNC contribution here due to the fact that 232Th has nuclear
spin I = 0. Despite suppression from both the E1 and PNC matrix elements
the amplitude is large, an order of magnitude larger than the 6s–7s transition
in Cs. Though the accuracy here is not high, this transition could be used in
isotopic chain measurements to determine ratios of the weak charges for different
isotopes of Th. 232Th is practically stable, with a half-life of 1.5×1010 yr.

3.4.6 Protactinium

As well as the enhancement that is due to the presence of close electronic levels
of opposite parity, there is some suggestion that there may also be a very large
nuclear enhancement of P -, T -odd effects in 229Pa [221] (see also [107, 222–224]),
which has nuclear spin I = 5/2. The suggestion of large nuclear enhancement
comes from experimental evidence that there is an extremely small energy split-
ting (∼ 0.22 keV) between the members of a ground state parity doublet [234].
However, more recent experimental work has put the identification of these lev-
els into doubt (see, e.g. [235]). Even so, the parity violating nuclear effects can
reasonably be expected to be large, and along with the electronic enhancement
this makes Pa an interesting case also.

To perform these calculations for Pa, which has five valence electrons, I
follow a similar procedure as in Th, however I do not allow any excitations
from the eight leading configurations in the production of the wavefunctions.
The experimental energies of these states, as well as calculations of the reduced
matrix elements of the relevant operators, are presented in Table 3.38.

Note that it would be preferable to perform calculations in Pa (and even
Th) using the conventional CI method with a V N potential. The benefits for
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Table 3.36 NSD-PNC amplitudes (z components) for the 3F4 → 3H4 transition in Th. The NSI contribution
to this transition is not enhanced. Units: 10−10iea0 κ

I Fa Fb EPNC

227Th 0.5 3.5 4.5 3.4
4.5 4.5 −1.0

I Fa Fb EPNC

229Th 2.5 1.5 2.5 1.4
2.5 2.5 −0.87

3.5 1.7
3.5 2.5 −0.12

3.5 −1.4
4.5 1.8

4.5 3.5 −0.16
4.5 −1.7
5.5 1.8

5.5 4.5 −0.14
5.5 −1.5
6.5 1.5

6.5 5.5 −0.086
6.5 −1.0

Table 3.37 PNC amplitudes (z components) for the 3F2 → 3F3 transition in Th. Units: 10−10iea0

QW I Fa Fb EPNC

227Th
−128.9 0.5 1.5 2.5 0.95× [1 + 0.22κ]

2.5 2.5 −0.34× [1 + 0.22κ]
3.5 0.83× [1− 0.16κ]

QW I Fa Fb EPNC

229Th
-130.8 2.5 0.5 0.5 −0.79×[1+0.21κ]

1.5 0.72×[1+0.18κ]
1.5 0.5 −0.42×[1+0.21κ]

1.5 −0.91×[1+0.18κ]
2.5 0.68×[1+0.13κ]

2.5 1.5 −0.28×[1+0.18κ]
2.5 −0.91×[1+0.13κ]
3.5 0.68×[1+0.054κ]

3.5 2.5 −0.17×[1+0.13κ]
3.5 −0.83×[1+0.053κ]
4.5 0.68×[1−0.042κ]

4.5 3.5−0.091×[1+0.053κ]
4.5 −0.62×[1−0.043κ]
5.5 0.68×[1−0.16κ]
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Table 3.38 Reduced matrix elements 〈a||Ĥ||b〉 for the amplitudes between the relevant states of Pa. Also
shown are the experimental energies of the levels [189].

Odd state Even state Hab (a.u.)
a b −er γ5ρ αρ

5f6d37s 6Io9/2 5f26d7s2 4K11/2 0.22 −13.7

(8583 cm−1) (0 cm−1)

5f26d7s2 4G11/2 0.36 −4.5
(8571 cm−1)

5f26d7s2 4H9/2 −0.08 2.8 3.8
(8596 cm−1)

Table 3.39 NSD-PNC amplitudes (z components) for the 4K11/2 → 4G11/2 transition in Pa. The NSI
contribution to this transition is not enhanced. Units: 10−10iea0 κ

I Fa Fb EPNC

229Pa 2.5 3 3 0.039
4 0.0061

4 3 −0.055
4 0.063
5 0.0070

5 4 −0.071
5 0.072
6 0.0056

6 5 −0.078
6 0.067
7 0.0028

7 6 −0.077
7 0.043

8 7 −0.064

I Fa Fb EPNC

231Pa 1.5 4 4 0.041
5 0.0032

5 4 −0.078
5 0.056
6 0.0024

6 5 −0.092
6 0.043

this type of Hartree-Fock potential when only a small basis is used for the
valence wavefunctions was discussed in Section 3.4.2. However, I find that in
these cases the convergence of the TDHF equations [Eqs. (A.40) and (A.41)
of Appendix A.6.1] is problematic due to the open s, f , and d shells of the
important configurations. This is especially true for the operator of the NSD-
PNC interaction, which leads to unstable and unreliable results. It is for this
reason that I make use of the V N−M potential approach despite the reduction
in accuracy.

There are two transitions of particular interest in Pa. The first is between
the even 5f26d7s2 4K11/2 ground-state and the 5f26d7s2 4G11/2 upper state,
and the other is between the ground-state and the 5f26d7s2 4H9/2 state. Both
transitions are enhanced by the proximity of the odd 5f6d37s 6Io9/2 state to the

upper state of the transitions with energy intervals of 12.0 cm−1 and 13.2 cm−1

respectively.
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Table 3.40 PNC amplitudes (z components) for the 4K11/2 → 4H9/2 transition in Pa. Units: 10−10iea0

QW I Fa Fb EPNC

229Pa
-129.8 2.5 3 2 −5.1×[1+0.023κ]

3 3.0×[1+0.018κ]
4 0.35×[1+0.011κ]

4 3 −4.4×[1+0.018κ]
4 3.5×[1+0.011κ]
5 0.32×[1+0.0028κ]

5 4 −3.8×[1+0.011κ]
5 3.5×[1+0.0028κ]
6 0.25×[1−0.0073κ]

6 5 −3.8×[1+0.0028κ]
6 3.0×[1−0.0073κ]
7 0.15×[1−0.019κ]

7 6 −3.5×[1−0.007κ]
7 2.3×[1−0.019κ]

8 7 −3.5×[1−0.019κ]

QW I Fa Fb EPNC

231Pa
-131.8 1.5 4 3 −4.7×[1+0.023κ]

4 2.2×[1+0.012κ]
5 0.14×[1−0.0022κ]

5 4 −4.1×[1+0.012κ]
5 2.3×[1−0.0022κ]
6 0.10×[1−0.019κ]

6 5 −3.8×[1−0.002κ]
6 1.9×[1−0.019κ]

7 6 −3.8×[1−0.019κ]

Calculations of the AM induced PNC amplitudes for the 4K11/2 − 4G11/2

transition are presented in Table 3.39. There is also a NSI contribution to this
transition but it is not enhanced and is smaller than the NSD part.

The 4K11/2 − 4H9/2 transition transition has enhanced contributions from
both the AM and QW induced contributions. The amplitudes for this transition
are presented in Table 3.40. The NSD amplitudes in Table 3.39 and 3.40 are
approximately 10 times smaller than those calculated for Th, however the AM,
κa(229Pa), may be much larger.

I calculate the z component (Jz=9/2) for the F -independent part of the
4K11/2 − 4H9/2 NSI-PNC amplitude to be

EPNC(231Pa) = −44× 10−11(−QW /N) iea0. (3.14)

As for Th, the accuracy here is not high, though the amplitude is very large,
about the same size as the 7s–6d3/2 amplitudes in Fr and Ra+, and about a
third of the size of the 1S0−3D1 amplitude in neutral Ra. This transition would
therefore be of interest for measuring the ratio weak charges for a number of
different isotopes of Pa, the most stable of which being 231Pa, with a half-life of
about 32500 yr.

3.4.7 Discussion and conclusion

I have presented calculations of strongly enhanced atomic parity nonconserva-
tion due both to the nuclear weak charge and the nuclear AM in the hope of
motivating experiment. Experiments, including the production of beams of var-
ious Ra isotopes, are currently under way with atomic parity violation in mind,
see e.g. [236, 237]. These methods can also be exploited for other actinides,
including neutral atoms and ions [237]. Parity violation experiments in Yb have
already been performed [36], and improvements are under way [85]. In princi-
ple these could make use of the chain of isotopes method, and also lead to the
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extraction of the AM. For most of the atoms considered here, experiments sim-
ilar to the type used to measure PNC in Yb would be applicable. In principle,
an experiment like that currently being used to search for PNC in dysprosium
could also be used [89]. In this method it is not directly the PNC amplitude
that is measured, and the quantity of immediate interest is the weak matrix
element of the dominating term, making this method particularly interesting
for the transitions that would otherwise be from excited states. A condition
here, however, is that the upper state be relatively stable [89]. For the Ac+ ion,
a method similar to that put forward by Fortson in Ref. [92] for measuring PNC
in single ions that have been laser trapped and cooled could be used.

Note that I have not considered PNC in dysprosium in this chapter, since
calculations for PNC in dysprosium have been performed fairly recently [91].
The feature of dysprosium that makes it a particularly interesting system for the
study of atomic PNC is the existence of two nearly degenerate states of opposite
parity and the same total angular momentum, J = 10, at E = 19797.96 cm−1.
Despite this close-level enhancement, the overall PNC effect in dysprosium has
been found to be small, due to only very small amounts of s-p mixing in the
relevant matrix element [89, 91], and a non-zero PNC signal has not yet been
observed. This does not mean that this transition is not interesting, however,
and it is still the subject of much interest and ongoing work, not only to measure
PNC, but also as a test of other fundamental symmetries and as a possible
sensitive test for variation of the fundamental constants [238, 239], as well as
searching for evidence of a parity violating cosmic field, and dark matter, as
discussed in Ch. 5 of this thesis.

Anapole moment induced transitions are presented for systems whose nuclear
spin is caused both by a valence neutron (Ra, Ba, and Th) and a proton (Ac+

and Pa). I expect the accuracy of the calculations to be approximately 20% for
Ra, Ba, and Ac+, and provide order-of-magnitude calculations for Th and Pa.
Calculations for Th and Pa can be improved by extending the CI calculations
and performing a summation for the entire PNC amplitude. More complete
calculations for all systems can be performed if experimental work is under
way. Due to the very large enhancement of the PNC amplitudes the atoms and
ions considered here are promising candidates for experimental studies of parity
violating nuclear forces and for studying PNC in a chain of isotopes.
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CHAPTER 4:
Double Core Polarisation:

contribution to atomic parity-nonconservation and

electric-dipole-moment calculations

In this chapter, I present a detailed study of the effect of the double core
polarisation (the polarisation of the core electrons due to the simultane-
ous action of the electric dipole and parity-violating weak fields) for am-
plitudes of the ss and sd parity violating transitions, and for the atomic
electric dipole moments for several atoms and ions of experimental in-
terest. This effect is quite large, and may have been missed in several
previous calculations. It therefore has the potential to resolve some dis-
agreement between calculations in the literature, and has significant con-
sequences for the use of experimental data in the accuracy analysis.

4.1 Introduction

Measurements of parity nonconservation (PNC), and atomic electric dipole mo-
ments (EDMs) provide important tests of the electroweak theory. The PNC
amplitude of the 6s–7s transition in cesium is the most precise low-energy test
of the standard model to date. This precision is a result of the highly accurate
measurements [4, 53] as well as the almost equally accurate atomic calcula-
tions [9–11], which are needed for their interpretation (see also [5, 8]).

For calculations of PNC in Cs there is very good agreement between calcu-
lations, and the high accuracy is widely accepted. For other systems, however,
there is disagreement between various calculations—in some cases by as much
as 5%. Due to the potential significance of these calculations for probing physics
beyond the standard model, it is very important that this disagreement be re-
solved.

In addition to the well known experiments for Cs, PNC measurements are un-
der consideration for the Ba+ ion [92] and are in progress for the Ra+ ion [94, 97–
100]. The FrPNC collaboration has begun the construction of a laser cooling
and trapping apparatus with the purpose of measuring atomic parity nonconser-
vation in microwave and optical transitions of francium [80–84]. There are also
experiments under way at the Cyclotron and Radioisotope Centre (CYRIC) at
Tohoku University to use Fr in an electron EDM measurement [240–242]. For
more current and prospective EDM experiments see, e.g., Refs. [3, 28].

Reliable interpretation of all these measurements requires accurate atomic
calculations. In this chapter, we consider a particular aspect of atomic calcu-
lations that has received little attention in previous publications. This is the
effect of the double core polarisation (DCP), which arises due to the simultane-
ous action of the electric dipole (E1) and parity-violating weak fields [243]. The
polarisation of the atomic core by the electric field of the laser is affected by
the presence of the weak interaction and vice versa. This leads to an additional
contribution to the PNC amplitude or atomic EDM, which varies significantly
between different atoms and transitions. For example, it contributes only 0.26%
to the 6s–7s PNC transition in Cs but is significantly larger for the sd PNC
transitions—reaching 6% for the 6s–5d3/2 PNC transition in Ba+. A special
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case is the thallium atom. If thallium is treated as a mono-valence system, then
the double core polarisation contribution is about 40% for the 6p1/2–6p3/2 PNC
amplitude and about 60% for the EDM induced in the 6p1/2 ground state. If
instead, Tl is treated as a three-valence system, then the majority of the DCP
is included automatically via the configuration interaction equations.

The importance of the double core polarisation contribution is known, and
is included in many PNC and EDM calculations (see, e.g., Refs. [8, 38, 179]).
However, it was never studied in detail and its importance was never properly
emphasised. Perhaps for this reason it may be that some calculations based on
the sum-over-states approach have missed this contribution.

Here, we study the effect of the double core polarisation for the amplitudes
of the ss and sd parity non-conserving transitions in Rb, Cs, Ba+, La2+, Tl,
Fr, Ra+, Ac2+, and Th3+ as well as electron EDM enhancement factors for the
ground states of the above neutral atoms and Au. We show that the effect is
large and in some cases can explain the discrepancy between different calcula-
tions. We also show that this contribution affects the analysis of the accuracy
of the calculations based on the use of the experimental data.

4.2 Calculations

4.2.1 PNC and EDM amplitudes

Some of the discussion and equations presented here is a repitition of that pre-
sented earlier and in the appendix. I present it again here, though, for com-
pleteness, and because it is directly relevant to the current discussion.

The PNC amplitude of a transition between states of the same nominal
parity can be expressed via the sum over all intermediate opposite-parity states
n,

EPNC =
∑
n

[ 〈w|d̂E1|n〉〈n|ĥPNC|v〉
εv − εn

+
〈w|ĥPNC|n〉〈n|d̂E1|v〉

εw − εn

]
, (4.1)

where v, w, and n are many-electron wavefunctions of the atom with corre-
sponding energies ε, d̂E1 is the electric dipole transition operator and ĥPNC is
the operator of the weak interaction. Likewise, the contribution to an atomic
EDM induced in the atomic state a by a mixing of opposite parity states n has
the form

datom = 2
∑
n

〈a|d̂E1|n〉〈n|ĥPT |a〉
εa − εn

, (4.2)

where ĥPT is the P - and T -odd operator that depends on the electron EDM
and mixes states of opposite parity.

The amplitudes can then be evaluated via a direct summation of products
of matrix elements and energy denominators over the states n. We refer to
this method as the direct-summation (DS) method. We, however, bypass this
technique in favour of a more numerically stable approach based on solving
differential equations, the so-called mixed-states method (sometimes also the
‘solving-equations’ method), as described in Appendix A.8. This approach,
which is outlined in the next section, has many important advantages, not
least of which is that it allows the easy inclusion of the important double core
polarisation (DCP) contribution.
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4.2.2 Atomic structure calculations and core polarisation

The above ‘exact’ expressions (4.1) and (4.2) can be reduced to approximate
formulas containing instead single-electron energies and matrix elements. Then,
many-body effects are included by modifying the single-electron orbitals and the
external field operators.

We begin with the relativistic Hartree-Fock approximation and proceed to
include the dominating electron correlation effects using the correlation potential
method [5, 70, 199, 219, 244, 245]. The correlation potential is used to construct
the so-called Brueckner orbitals (BOs) for the valence electron, which are found
by solving the Hartree-Fock-like equations with the extra operator Σ̂:

(Ĥ0 + Σ̂− En)ψ(BO)
n = 0, (4.3)

where Ĥ0 is the relativistic Hartree-Fock Hamiltonian and the index n denotes
valence states. The BO ψ

(BO)
n and energy En include correlations; see Ap-

pendix A.4.2 for more detail.
Interactions with the external fields are included via the time-dependent

Hartree-Fock (TDHF) approximation (see, e.g., [5, 70, 199, 219, 243–245], and
Appendix A.6.1). The external fields in question are the electric dipole (E1)
interaction with the electric field of the photon, dE1, and either the nuclear-
spin–independent weak interaction hPNC, or the P - and T -odd weak interaction
hPT in the case of atomic EDMs. It is with this method that we also include the
important core-polarisation effects, which arise from the action of the external
fields on the Hartree-Fock V N−1 core potential.

Within the framework of the TDHF method, the single-electron wavefunc-
tion in external weak and E1 fields is expressed

ψ = ψ0 + δψ +Xe−iωt + Y eiωt + δXe−iωt + δY eiωt, (4.4)

where ψ0 is the unperturbed state, δψ is the correction due to the weak interac-
tion acting alone, X and Y are corrections due to the photon field acting alone,
δX and δY are corrections due to both fields acting simultaneously, and ω is
the frequency of the PNC transition. Since the EDM amplitude is a diagonal
matrix element with no transition, ω = 0 in the EDM case. This method is
equivalent to the well-known random phase approximation (RPA).

The corrections δV to the core potential are found by solving the following
system of RPA equations self-consistently for the core states.

The equations for the E1 core polarisation,

(Ĥ0 − Ec − ω)Xc = −(d̂E1 + δV̂E1)ψ0c,

(Ĥ0 − Ec + ω)Yc = −(d̂†E1 + δV̂ †E1)ψ0c,
(4.5)

and for the weak core polarisation,

(Ĥ0 − Ec)δψc = −(ĥf + δV̂f )ψ0c, (4.6)

are independent and can be solved separately. Here, the index c denotes core
states, ĥf is the operator of the external weak field, and δV̂f and δV̂E1 are
corrections to the core potential arising from the weak and E1 interactions
respectively. Again, ω is the energy of the PNC transition, and is zero in the case
of EDMs. An example set of diagrams corresponding to the PNC amplitude or
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Figure 4.1 Example diagrams for the PNC amplitude v → w or atomic EDM (in which case w = v) including
(single) core polarisation to the lowest-order in the Coulomb interaction. The solid line represents the HF or
BO electron, the dashed line is the E1 interaction, the wavy line is the Coulomb interaction, and the cross
denotes the weak interaction. There are also the corresponding diagrams with the weak and E1 interactions
interchanged.
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Figure 4.2 Example diagram for the lowest-order (in the Coulomb interaction) double core polarisation
contribution to the PNC amplitude v → w or atomic EDM (in which case w = v). For PNC there is only the
exchange diagrams (shown) but for EDM there are also direct diagrams. There is also a diagram with the order
of the weak and E1 interactions interchanged.

v

w w

v

atomic EDM including the lowest-order (single) core polarisation are presented
in Fig. 4.1.

There is also the set of equations corresponding to the double core polarisa-
tion:

(Ĥ0 − Ec − ω)δXc = −δV̂E1δψc − δV̂fXc − δV̂fE1ψ0c + δEcψ0c,

(Ĥ0 − Ec + ω)δYc = −δV̂ †E1δψc − δV̂fYc − δV̂ †fE1ψ0c + δEcψ0c.
(4.7)

Here, δV̂fE1 is the correction to the core potential arising from the simultane-
ous perturbation of the weak field and the electric field of the laser light, and
δEc is the corresponding correction to the core energy. An example diagram
corresponding to the DCP correction is presented in Fig. 4.2. The correction to
the core energy,

δEc = 〈ψ0c|δV̂E1|δψc〉+ 〈ψ0c|δV̂f |Xc〉+ 〈ψ0c|δV̂fE1|ψ0c〉, (4.8)

is zero in the case of PNC (since the matrix elements of the weak PNC interac-
tion are imaginary and cannot produce a shift in the energy, even in an electric
field), but non-zero for EDMs.

The equations (4.7) depend on the solutions to equations (4.5) and (4.6), and
must therefore be iterated after (4.5) and (4.6) are solved (and their convergence
has been realised). In the mixed-states method, the PNC amplitude between
valence states a and b is then given by

EPNC = 〈ψb|d̂E1 + δV̂E1|δψa〉+ 〈ψb|ĥPNC + δV̂W |Xa〉+ 〈ψb|δV̂fE1|ψa〉
= 〈Xb|d̂PNC + δV̂W |ψa〉+ 〈ψb|ĥPNC + δV̂W |Xa〉+ 〈ψb|δV̂fE1|ψa〉
= 〈ψb|d̂E1 + δV̂E1|δψa〉+ 〈δψb|d̂E1 + δV̂E1|ψa〉+ 〈ψb|δV̂fE1|ψa〉,

(4.9)

and the corresponding atomic EDM is given by

datom = 2〈ψa|d̂E1 + δV̂E1|δψa〉+ 〈ψa|δV̂fE1|ψa〉. (4.10)

Note that the two different ways of expressing the PNC amplitude [second two
lines in Eq. (4.9)] gives a very strong test of the numerical accuracy of the
mixed-states approach. By using BOs for the valence states ψa and ψb in (4.9)
and (4.10) we can include correlations in the calculation of the PNC and EDM
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amplitudes. The corrections δψa and δψb to the BOs ψa and ψb are also found
with the use of the correlation potential Σ̂:

(Ĥ0 − Ea + Σ̂)δψa = −(ĥf + δV̂f )ψ0a. (4.11)

The last term in equations (4.9) and (4.10) represents the double core po-
larisation contribution (DCP), which is due to the simultaneous action of the
two external fields. This term gives an important correction that is often not
included in sum-over-states calculations.

It is possible to include a term for the DCP perturbatively directly after
solving equations (4.5) and (4.6), and without iterating the equations (4.7). For
example, by solving the equations (4.7) once without iterating, or by adding
the term as a MBPT diagram (as in Fig. 4.2) that corresponds to a double
core-excitation. This contribution corresponds to the lowest order DCP term,
which we refer to as δV pert.

fE1 . There is, however, another contribution that comes
from further iterations of the pair of equations (4.7), which corresponds to the
summation over all higher-order (in the Coulomb interaction) diagrams. This
effect, which we refer to as the relaxation effect δV relax

fE1 , has a significant impact
on the value of the double core polarisation. The relative size of this relaxation
effect means it is not enough to simply include the term perturbatively, and the
total DCP term must be taken as δVfE1 = δV pert.

fE1 + δV relax
fE1 .

In these calculations we didn’t include corrections such as structure radiation
(the correction to the correlation potential Σ due to the E1 field, δΣE1, the weak
correlation potential, δΣW , and the combined weak and E1 fields, δΣWE1), or
other higher order corrections such as ladder diagrams, and renormalization of
states. These corrections are typically small (with perhaps the exception of
thallium when treated as a single valence system) though they should be taken
into account for accurate calculations.

4.3 Results and discussion

4.3.1 PNC amplitudes

We have performed calculations of the double core polarisation correction to
many PNC amplitudes, the results of which are presented in Table 4.1 along with
several existing PNC calculations for comparison. We present the contributions
of the double core polarisation that stem from including the term perturbatively,
δV pert.fE1 , and the subsequent relaxation effect, arising from further iterations of

(4.7), δV relaxfE1 , separately.
Our results show that the double core polarisation term is quite large, es-

pecially for the sd PNC transitions, and also that the relaxation effect is not
small and must be included along with the perturbative lower order term. We
also demonstrate that in these cases the majority of the discrepancy between
the mixed-states (MS) and direct sum-over-states (DS) calculations can be ex-
plained by the possible omission of the DCP term.

In Ref. [93], calculations of sd PNC transitions were performed for Cs, Ba+,
Fr and Ra+ using both the mixed-states and the direct-summation methods.
As discussed, the double core polarisation contribution was included in [93] in
the MS calculations only. In that work there was about a 4% discrepancy be-
tween the DS and MS calculations for Cs and Fr, 8% for Ba+ and 7% for Ra+.
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Table 4.1 Double core polarisation contribution to parity nonconservation amplitudes for transitions in several
atoms and ions. We present several of the most complete calculations, and what their value would be if the

DCP term was omitted (E
−δVfE1

PNC ). Shown separately are the lowest order perturbative DCP term, δV pert.
fE1 , and

the relaxation contribution that comes from iterations of the equations (4.7), δV relax
fE1 . Also shown are several

available calculations and the methods they used for comparison. MS refers to the mixed-states (or solving-
equations) method, which typically includes the DCP term, and DS is the direct-summation method, which may
not. CC Means the coupled-cluster method, and MP means using many-body perturbation theory. Amplitudes
are presented in units of ieaB(−QW /N)× 10−11.

EPNC ∆EPNC(DCP) - This work Other values

Transition Most complete δV pert.fE1 δV relaxfE1 δV totalfE1 E
−δVfE1

PNC EPNC Method

85Rb 5s–6s 0.1390(7) [101] −0.0004 0.0001 −0.24% 0.1393 0.139(2) [38] MS-MP
5s–4d3/2 −0.450 a 0.0065 0.0021 −2.0% −0.459 —

133Cs 6s–7s 0.9041(45)[8] −0.0034 0.0010 −0.26% 0.907 0.8977(40)[11] DS-MP
0.8906(24)[9] DS-CC

6s–5d3/2 −3.70(4) [191]b 0.070 0.030 −2.6% −3.80 −3.76(7) [93] DS-MP
−3.62(7) [93] MS-MP

137Ba+ 6s–7s 0.658(7) [191]b −0.007 0.001 −0.84% 0.664 —

6s–5d3/2 −2.20(2) [191]b 0.073 0.067 −6.0% −2.34 −2.34(9) [93] DS-MP
−2.17(9) [93] MS-MP
−2.46(2) [220] DS-CC

139La2+ 6s–5d3/2 −2.14(2) [191]b 0.051 0.085 −6.0% −2.28 —
223Fr 7s–8s 15.49(16) [197] −0.05 0.05 −0.06% 15.5 15.41 [79] DS-CC

15.9(2) [78] MS-MP

7s–6d3/2 −58.0(6) [191]b 1.12 0.40 −2.6% −59.5 −59.5(24) [93] DS-MP
−57.1(23) [93] MS-MP

226Ra+ 7s–8s 10.9(1) [191]b −0.10 0.07 −0.28% 10.9 —

7s–6d3/2 −44.3(4) [191]b 1.29 0.92 −4.8% −46.5 −45.89 [95] DS-CC
−46.4(14) [94] DS-CC
−45.9(19) [93] DS-MP
−43.9(18)c [93] MS-MP

227Ac2+ 7s–6d3/2 −42.8(4) [191]b 1.01 1.21 −4.9% −45.0 —
232Th3+ 7s–6d3/2 −43.6(4) [191]b 0.75 1.44 −4.8% −45.8 —

a This work
b This work (see previous chapter)
c Rescaled from 223Ra+
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Here, we calculate the contribution of the double core polarisation for these s–d
transitions to be approximately 3% for Cs and Fr, 6% for Ba+ and 5% Ra+ –
consistently making up for most of the disagreement. The rest of the difference
likely comes from the numerical accuracy of the different methods and minor
differences in correlation calculations. If the double core polarisation contri-
bution is removed from the MS calculations then our MS and DS calculations
match perfectly for Ba+ and Fr, and are within 1% for the Cs and Ra+ values
from [93].

The sd transition in Ra+ is a particularly useful case to study as there
are a number of values available for comparison. Total DCP contribution is
about −5% (see Table 4.1) which is very close to the difference between the
most complete calculations (from the previous chapter of this thesis) and all
calculations using the DS approach where this contribution may be missing.
The range of values that do not include the double core polarisation term,
including the DS values from Ref. [93], lie within 1% of each other. They also
lie within 1% of the value obtained by removing the DCP contribution from the
result of the previous chapter of this thesis.

Another value, calculated by Wansbeek et al. [94] using a relativistic coupled-
cluster (CC) approach, also agrees with these values, lying within 0.3% of the
value calculated in this work without double core polarisation and 0.2% of the
Pal et al. [95] DS value. It is not clear if the DCP contribution was included in
the works [94, 95]. (A brief overview of the CC and MP methods are given in
Appendix A.5 and A.4, respectively.)

The difference between the 6s–7s PNC transitions in Cs for the mixed-
states value 0.9041(45) of Ref. [8] and the sum-over-states value 0.8906(24) of
Ref. [9, 10] is larger than the DCP term – it is mainly due to missed contributions
to the core and tail parts of the summation in (4.1) (see [11] for full detail). It is
worth noting however, that the double core polarisation contribution of 0.26%
is of the same size as the uncertainty quoted in Refs. [9, 10] of 0.27%—meaning
that this uncertainty can only be claimed if the DCP contribution is included.
As we shall discuss in the next section, the double core polarisation contribution
has particular impact on the accuracy analysis.

We have performed and presented detailed PNC calculations for these Fr-
and Cs-like ions in the previous chapter. A more complete analysis of the
accuracy of these calculations, including calculations of energy levels, lifetimes
and matrix elements is given there.

4.3.2 Atomic EDM

As well as parity nonconservation, calculations for several atomic electric dipole
moments (EDMs) induced by the dipole moment of the electron (de) have been
performed. These calculations, along with several existing calculations for com-
parison, are presented in Table 4.2.

Some previous calculations of the EDM for Cs [180], as well as Fr and
Au [250], do not include the double core polarisation term. These values, along

with one for Rb calculated in this work, are presented in the d
(0)
atom column of

Table 4.2. They are then corrected by adding the DCP term with the corrected
results given in the column dnew

atom. We find here also that the double core po-
larisation term is quite a large contribution, and that by including this term we
can improve the agreement between several previous calculations.
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Table 4.2 Double core polarisation contribution to Atomic EDM calculations for several atoms including both
the perturbative and relaxation parts. The values d

(0)
atom do not include DCP, and the values dnewatom do. Values

in units of de.

∆datom(DCP) - This work Other values

State d
(0)
atom δV pert.

fE1 δV relax.
fE1 % δV both

fE1 dnew
atom datom Ref.

Rb 5s 26.8a −0.59 −0.86 −5.4% 25.4 25.74(26) [246]
25.7 [247]
24.6 [248]

Cs 6s 124(4)b −3.0 −2.5 −4.4% 119(4) 120.5(12) [246]
114.9 [248]

Au 6s 260(39)c −6.7 −3.4 −3.9% 250(39) 249.9 [248]
Fr 7s 910(46)c −24.3 −12.1 −4.0% 874(46) 894.93 [249]

a This work.
b Reference [180].
c Reference [250].

It is interesting to note that if we include only the perturbative DCP term
into the EDM calcualtions for Cs and Fr and don’t include the relaxation term,
we reproduce the values from References [246] and [249] almost exactly (see
Table 4.2).

The Tl atom represents an interesting case for both PNC and EDM calcu-
lations. If we treat Tl as a mono-valence system, then the DCP contribution to
the PNC amplitude is huge. It contributes 36% to the PNC amplitude of the
6p1/2–6p3/2 transition and about 60% to the EDM of the ground state. The
DCP contribution is strongly dominated by the 6s electrons. An example dia-
gram for the DCP contribution to the 6p1/2–6p3/2 PNC amplitude in Tl (where
Tl is treated as a mono-valence system with the 6s electrons treated as part
of the core) is presented in Fig. 4.3. This reflects the well-known fact that the
correlations between the three outermost electrons in thallium are strong and
should be treated accurately. In our view, the best approach is to treat thallium
as a triple-valence-electron system and to use the configuration interaction (CI)
technique combined with many-body perturbation theory (MBPT) for includ-
ing valence–core correlations; as discussed in Appendix A.7. In this approach,
the dominating DCP contribution is included automatically; see Fig. 4.4.

However, good results can be obtained in other approaches too if correlations
between 6s and 6p electrons, including the DCP contribution, are treated ac-
curately. For example, by treating Tl as a single-valence system, and including
core-polarisation (but not DCP) and correlations to second-order in MBPT, we
calculate the EDM of Tl to be d(Tl) = −2000 de (many times larger in mag-
nitude than the ‘correct’ value of ∼ −600 de [181]). Including the DCP term,
however, brings the value to ∼ −700 de, making up most of the difference. The
rest of the difference comes from the higher-order correlation effects included in
Ref. [181], but not included in our work.

In early calculations of the PNC in thallium [38] it was treated as a mono-
valence system and the DCP contribution was included. Recent calculations of
the EDM enhancement factor [180, 181] used the CI approach, the calculations
of the Tl EDM based on the coupled-cluster approach [179, 182] seems to include
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Figure 4.3 An example DCP contribution to the 6p1/2–6p3/2 PNC amplitude in Tl when Tl is treated as a
single-valence system (the 6s states are considered part of the core). Here, the solid lines correspond to HF or
BO electron wavefunctions, the cross denotes the weak (PNC or EDM) interaction, the dotted line denotes the
E1 interaction, and the wavy line is the Coulomb interaction (of multipolarity, k).
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Figure 4.4 Contribution to the 6p1/2–6p3/2 PNC amplitude in Tl corresponding to the DCP diagram pre-
sented in Fig. 4.3, when Tl is treated as a three-valence system. This diagram is included automatically when
using the CI technique.
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the DCP contribution too by introducing the perturbed excitation operators T1

and T2 (see [179] for detailes).

4.4 Implications for accuracy analysis

Most of the accuracy analysis in the literature assumes that the PNC and EDM
amplitudes can be reduced to a sum of products of matrix elements and energy
denominators that are all independent. The E1 matrix elements and energies
can then be compared with experimental values in order to judge the accuracy
of the calculations. The accuracy of the weak matrix elements can similarly
be judged by calculating hyperfine structure constants, since both the weak
interaction and the hyperfine structure rely on the form of the wavefunctions on
short distances. The accuracy of this analysis, however, is limited by the value
of the double core polarisation effect – which is by no means negligible. The
DCP contribution cannot easily be presented as a product of weak and electric
dipole matrix elements which are independent on each other. If the analysis of
accuracy ignores this contribution it does not present the whole picture.

For example, the DCP contribution is 5% for the 7s–6d3/2 PNC transition
in Ra+. Some sophisticated calculations can give excellent agreement with the
experimental data for the energies, electric dipole transition amplitudes and for
the hyperfine structure. The accuracy for the PNC amplitude, however, would
still only be 5% if the DCP contribution was not included.
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CHAPTER 5:
Parity-Violating Interactions of

Cosmic Fields with Atoms,
Molecules, and Nuclei:

limits on parameters of Lorentz and CPT-violation

In this chapter, I present methods for extracting limits on the strength of
P -odd interactions of various cosmic fields with electrons, protons, and
neutrons, by exploiting the static and dynamic parity-nonconserving am-
plitudes and electric dipole moments they induce in atoms. Candidates
for such fields are dark matter (including axions) and dark energy, as
well as several more exotic sources described by Lorentz-violating stan-
dard model extensions. Atomic calculations are performed for several
atoms and ions. From these calculations, and existing measurements in
Dy, Cs, and Tl, constraints are placed on the interaction strengths of sev-
eral parity-violating cosmic fields with electrons and neutrons. Note that
in this chapter, I depart from the usual convention of atomic units, and
employ the more standard natural relativistic units (~ = c = 1), in order
to aid with comparisons with other works.

5.1 Introduction

Scalar and pseudoscalar cosmic fields (e.g. the Higgs and axion fields) have a
strong theoretical underpinning. As well as these, many other background fields
are invoked by theories which extend beyond the standard model (SM), for ex-
ample, supersymmetric theories, and string theory. Many of these fields, includ-
ing vector, pseudovector, and tensor fields, have been conveniently parametrised
in the form of the so-called Standard Model Extension (SME) [254–256]. In this
chapter, we examine the parity and time-reversal violating effects, including
parity nonconservation (PNC) amplitudes and atomic electric dipole moments
(EDMs), that such cosmic fields induce in atomic systems through their inter-
action with electrons, protons, and neutrons. In the next chapter, I discuss
the specific case of axion and axion-like particle dark-matter detection in more
detail.

The existence of a cosmic field that interacts with electrons in a parity-
violating manner can contribute to the mixing of opposite-parity atomic states,
leading to parity-violating effects in atoms. Parity nonconservation amplitudes
are parity-violating E1 transitions between two states of the same nominal par-
ity. They are generated by parity-violating forces; in the conventional case,
these include Z0-boson exchange between the electrons and nucleons and the
electromagnetic interaction of the electrons with parity-violating nuclear mo-
ments that are borne by parity-violating forces inside the nucleus, as discussed
in Ch. 1 (also see, e.g., Refs. [3, 27, 28]).

In addition to inducing PNC effects and EDMs, cosmic fields that inter-
act with standard-model fermions can give rise to other fascinating phenom-
ena. In the case of axions, this includes the axio-electric effect [257–264], nu-
clear anapole moments, and spin-gravity and spin-axion momentum couplings
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in atomic, molecular, solid-state and nuclear systems [265–268]. A general pseu-
doscalar cosmic field need not necessarily be restricted to an axionic one; dark
energy and other exotic fields are also possibilities. We therefore present the
atomic-structure calculations separately from any field parameters, to avoid any
model dependence.

In Sec. 5.2, we first show that a static pseudoscalar cosmic field cannot give
rise to observable P -odd effects in atoms in the lowest order, and then present
the necessary theory and derive expressions for the PNC effects and EDMs
induced in atoms and nuclei by pseudoscalar and pseudovector cosmic fields.
We go on in Sec. 5.3 to present the methods used for our ab initio relativistic
atomic calculations for pseudovector and dynamic pseudoscalar cosmic-field–
induced PNC amplitudes and atomic EDMs for a number of neutral atoms and
ions. These calculations are necessary for determining, or placing limits upon,
important pseudoscalar and pseudovector cosmic-field parameters, in conjunc-
tion with appropriate experimental data. In Sec. 5.4, we present the results of
our atomic calculations and combine these with existing PNC experiments in
Cs, Tl, Yb, and Dy to give limits on the interaction strengths of static pseu-
dovector and tensor cosmic fields with electrons, protons, and neutrons. We also
discuss possible systems for experimentally obtaining limits on the interaction
strengths of dynamic cosmic fields with standard model fermions.

5.2 Theory

5.2.1 Parity-violating interactions of fermions with cosmic fields

Except where explicitly noted, we use natural units, ~ = c = 1, throughout.
Here, we consider two distinct sources of cosmic fields. Pseudoscalar (PS) fields,
such as axions, are described by the Lagrangian density

LPS = −iζmf φ ψ̄γ
5ψ + η(∂µφ) ψ̄γµγ5ψ, (5.1)

where ζ and η are dimensionless constants quantifying the interaction strength
of fermions with the PS cosmic field via a direct and derivative-type coupling,
respectively, mf is the mass of the fermion in question, ψ is the fermion wave-
function with the Dirac adjoint ψ̄ ≡ ψ†γ0, and γµ (with µ = 0, 1, 2, 3) and
γ5 = iγ0γ1γ2γ3 are the Dirac matrices. The factor mf is factorised purely for
convenience (to make ζ dimensionless); the coupling, in general, is not depen-
dent on the fermion mass.

Here, φ = φ(r, t) is the dynamic PS field in question. In the next section
we will see that an interaction of the form (5.1) with a static field will not
lead to any parity-violating effects in atoms in the lowest order. The field φ
(for example, an axion field or a light pseudoscalar dark-matter field) obeys the
Klein-Gordon equation, (∂µ∂

µ + m2)φ = 0. We take this field to be classical
and real, so that

φ(r, t) = cos(ωφt− pφ · r + ξ), (5.2)

where pφ and ωφ are the momentum and energy of the pseudoscalar field particle
(e.g. the axion), respectively, and ξ is a phase factor. We have absorbed the
amplitude of the field into the constants η and ζ. With a redefinition of the
phase factor at a fixed point in space, we can express this field more simply as
φ(r, t) = cos(ωφt). This is valid so long as the time scale of an experiment is
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sufficiently short that the evolution of the pφ ·r term in (5.2), which corresponds
to the motion of the observer with respect to the coordinates, is small compared
with the evolution of the ωφt term over the course of the experiment. This will
usually be the case, since the typical speed of a PS cosmic field relative to
Earth is expected to be v ∼ 10−3, see, e.g., Ref. [269]; a brief discussion of the
coherence time is given towards the end of this chapter.

We also consider terms from the Lorentz-invariance-violating SME [254–256]:

LSME =
1

2
iψ̄Γν

←→
∂ νψ − ψ̄Mψ, (5.3)

where

M = aµγ
µ + bµγ

µγ5 +
1

2
Hµνσ

λµ, (5.4)

Γν = cµνγ
µ + dµνγ

µγ5 + eν + ifνγ
5 +

1

2
gλµνσ

λµ, (5.5)

σλµ = i[γλ, γµ]/2, where [A,B] = AB −BA is the commutator, and A
←→
∂ νB ≡

A(∂νB)− (∂νA)B, where the derivatives act on the wavefunctions only (not the
fields). The relativistic interaction Hamiltonians due to Eqs. (5.4) and (5.5) are

ĥM = a0 + ajγ
0γj + b0γ

5 + bjγ
0γjγ5 + iH0jγ

j +
1

2
Hjkε

jklγlγ
5 (5.6)

and

ĥΓ = c00γ
0γjpj − (c0j + cj0)pj − cjkγ0γjpk −mc00γ

0

+ d00γ
0γjγ5pj − (d0j + dj0)γ5pj − djkγ0γjγ5pk

−mfdj0γ
jγ5 −mfe0 − ejγ0pj − ifjγ0γ5

− εjklgj00γlγ
5pk + i(gj0k + gjk0)γjpk

+
1

2
εjklgjkmγlγ

5pm − 1

2
mf ε

jklgkl0γ
0γjγ

5, (5.7)

respectively [270]. (Also see Ref. [270] for a derivation of the non-relativistic
form of the above Hamiltonian.) In the above equations, the Lorentz indices are
separated into their time and space components, with Latin characters j, k, l,m
running 1 through 3, and γa = −γa. We use the standard (+−−−) metric, and
a summation over repeated indices is assumed.

We note that interactions of cosmic fields with fermions are not limited
to those described by the SME Lagrangian (5.3). For example, dimension-
five operators that are linear in the electromagnetic gauge-field strength, see,
e.g., [271, 272], can produce static electric dipole moments of fundamental par-
ticles [272], and contribute to the splitting of the magnetic dipole moments of
fermions and their antifermion partners [253, 271].

5.2.2 Interaction of electrons with pseudoscalar and pseudovector

cosmic fields

The direct PS interaction [first term of the right-hand side of (5.1)], and the
time-derivative part of the derivative-type PS interaction [second term on the
right-hand side of (5.1)], lead to interaction Hamiltonians of the form

ĥPS
iγ0γ5 = iζmf cos(ωφt)γ

0γ5, (5.8)
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�φ

e e

(a) Pseudoscalar field φ

�bµ

e e

(b) Pseudovector field bµ

Figure 5.1 Fundamental vertices for the interaction of an electron with a pseudoscalar and pseudovector
cosmic field.

and
ĥPS
γ5 = ηωφ sin(ωφt)γ

5, (5.9)

which we shall refer to as the PS iγ0γ5 and the PS γ5 interactions, respectively1.
The fundamental vertices for the interactions (5.8) and (5.9) are represented by
the same Feynman diagram [presented in Fig. 5.1(a)]. Interactions of this form
with atomic electrons will manifest themselves as oscillating contributions to
PNC amplitudes and atomic EDMs.

It is also possible for parity-violating interactions of electrons with a cos-
mic field to produce static PNC effects in atoms. For this, we consider the
Lagrangian corresponding to the interaction of electrons with the pseudovector
(PV) field, bµ [Fig. 5.1(b)]:

LPV
γ5 = −bµψ̄γµγ5ψ

= −b0ψ†γ5ψ + b · ψ†αγ5ψ, (5.10)

where α = γ0γ, and we have absorbed the strength of the interaction into
the definition of the field bµ = (b0,−b). The temporal-component term of this
coupling leads to the interaction Hamiltonian

ĥPV
γ5 = b0(t)γ5, (5.11)

which could be either static [b0(t) = b0] or dynamic [b0(t) = b0 sin(ωbt)] (the
choice of phase here is entirely arbitrary, and is chosen for later convenience).
We refer to this interaction as either the static or dynamic PV γ5 interaction.
In the dynamic case, the effects of (5.11) will mimic those of (5.9). In the static
case, however, they will mimic the conventional nuclear-spin-independent (NSI)
PNC signal induced by Z0-boson exchange between the nucleus and electrons,
described by the Hamiltonian

ĥQW =
GF

2
√

2
QW ρ(r)γ5, (5.12)

where GF = 1.166×10−5 GeV−2 is the Fermi weak constant, QW is the nuclear
weak charge and ρ is the normalised nucleon density (see Ch. 1). In the standard
model, QW ≈ −N , where N is the number of neutrons in the nucleus.

1Note that the ‘γ5’ interaction appears as γ0γ5 in the Lagrangian (and visa-versa); this
possibly confusing notation stems from the extra γ0 in ψ̄ = ψ†γ0.
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The spatial-derivative component terms in (5.1), and the spatial component
terms in (5.10), lead to interaction terms of the form σ ·Beff, where σ is the spin
of a SM fermion and Beff is an effective magnetic field due to the momentum
of the PS or PV cosmic field, and thus give no parity-violating effects. The
best current limits on such static interactions of a cosmic field with electrons,
protons, and neutrons, using the notation of the SME parametrization [256], are:
|b̃eX | < 1.3× 10−31 GeV, |b̃eY | < 1.3× 10−31 GeV [273, 274], |b̃p⊥| < 1.6× 10−33

GeV [275] and |b̃n⊥| < 8.4× 10−34 GeV [276] (see also [275]), respectively, where
the subscripts denote the field components in the sun-centred celestial-equatorial
frame. Here and throughout this chapter, the superscripts e, p, and n denote
the particle species: electron, proton, and neutron, respectively. For further
details on the broad range of experiments performed in this field and a brief
history of recent developments in the improvement of these limits, we refer the
reader to Refs. [256, 273, 274, 276–283]. A comprehensive list of the limits
extracted for the various interaction constants has been compiled in Ref. [284].
Indirect limits have been obtained for the SME parameter b̃eT through linear
combinations of several SME parameters, constrained at the level of ∼ 2×10−27

GeV [273, 274]. Indirect limits have also been obtained for the SME parameter
b̃nT [279]. In this thesis, we consider the extraction of direct limits on the P -
odd effects induced by the temporal component of the field, b0 [as defined in
Eq. (5.11)], for electrons, protons, and neutrons, which are complementary to
the limits derived from P -even fermion effects discussed above. We do not
consider the cosmic-field–induced interaction σ ·Beff further in this thesis, but
note that such an interaction can also be sought in an oscillatory form (see, e.g.,
Refs. [267, 268]).

Note that any effective Hamiltonian that is proportional to the γ5 or iγ0γ5

matrices will lead to a mixing of opposite-parity states in atoms and thus could
contribute to parity nonconserving amplitudes. In this sense, the calculations
provided in this chapter are general, and can be applied to any source leading
to an interaction in the above forms.

The matrix elements of the γ5 and iγ0γ5 operators are not entirely indepen-
dent of one another. Considering the relativistic Hamiltonian for an N electron
atom of nuclear charge Z in the presence of electrostatic interactions,

Ĥ =

N∑
ı=1

[
αı · pı +me(γ

0
ı − 1)− Ze2

rı
+
∑
<ı

e2

rı

]
, (5.13)

where pı is the relativistic (three-)momentum of the ıth electron, rı = |rı−r|,
and e = |e| is the elementary charge, the two operators in question are related
via the useful identity

iγ0
kγ

5
k =

i

2me
[Ĥ, γ5

k] (5.14)

(proved below), from which it follows that

〈b|iγ0
kγ

5
k|a〉 =

i

2me
(Eb − Ea)〈b|γ5

k|a〉, (5.15)

where the states a and b are eigenstates of the atomic Hamiltonian (5.13) with
eigenvalues Ea and Eb, respectively. Note that for the standard choice of angular
wavefunctions, the matrix elements of the iγ0γ5 operator are real and hence
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symmetric, whereas the γ5 operator gives rise to imaginary matrix elements,
and are antisymmetric. Equation (5.15) maintains this symmetry. To prove
the relation in the case of the electrostatic Hamiltonian (5.13), note that the
commutator in Eq. (5.14) reduces to

[Ĥ, γ5
k] =

∑
ı

(
[αı, γ

5
k] · pı +me[γ

0
ı , γ

5
k]
)

= 2meγ
0
kγ

5
k. (5.16)

We have made use of the relation {γµ, γ5} = 0 ({x, y} = xy + yx is the anti-
commutator). This relation holds equally well if we had used the Hartree-Fock
Hamiltonian (including core polarisation) in place of the ‘exact’ Hamiltonian
(5.13). In that case, the many-body wavefunctions and energies that appear in
Eq. (5.15) would be replaced by their single-particle counterparts.

The atomic PNC amplitude can then be written as

Ea→bPNC =
∑
k

〈b̃(t)|dk|ã(t)〉, (5.17)

where dk = −erk is the operator of the electric dipole (E1) interaction, and
|ã〉 = |a〉+ |δa〉 is the perturbed wavefunction associated with the atomic state
a, with |a〉 the unperturbed wavefunction, and |δa〉 is the correction to the
wavefunction due to the PNC interactions (5.8), (5.9) or (5.11). Likewise, the
induced atomic EDM can be expressed as

daEDM =
∑
k

〈ã(t)|dk|ã(t)〉. (5.18)

5.2.3 Interaction of atomic electrons with a static pseudoscalar field

and other SME terms

Before we present the formulas for |ã〉, we discuss briefly the effects of a possible
static pseudoscalar interaction, and show that such an interaction cannot give
rise to observable P -odd amplitudes in atoms in the lowest order (though note
that a static pseudovector field can). To see this for a derivative-type coupling,
note that the time derivative in the interaction Lagrangian density (5.1) vanishes
for a static field φ. The spatial derivative terms in (5.1) lead only to P -even
effects, since they cannot lead to mixing of opposite parity atomic states.

To see this for the direct pseudoscalar coupling [first term on the right-hand
side of (5.1)], we prove a general relation that states that any static interaction

Hamiltonian, ĥ, that can be expressed in the form

ĥ = [Ĥ, ô], (5.19)

where Ĥ is the atomic Hamiltonian (5.13), will not give rise to any electromag-

netic amplitudes, which have the form jµA
µ = ψ†b(A

0 + α · A)ψa, in atoms,
where Aµ = (A0,A) is the photon field, so long as the commutator

[A0 +α ·A, ô] = 0. (5.20)
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Using time-independent perturbation theory, the wavefunction, |ã〉 = |a〉 +

|δa〉, perturbed to first-order by the interaction ĥ (5.19) can be written as

|ã〉 = |a〉+
∑
n

|n〉〈n|ĥ|a〉
Ea − En

= |a〉 − ô|a〉; (5.21)

similarly,

〈ã| = 〈a|+ 〈a|ô. (5.22)

With the use of the relation (5.19), the energy denominators have cancelled, and
the summation was reduced to unity by closure. One can also check that |ã〉 in
(5.21) is the solution of the Dirac equation with the perturbation (5.19). Hence,

the correction induced by the static interaction ĥ to any general electromagnetic
interaction is reduced to

〈b|(A0 +α ·A)|δa〉+ 〈δb|(A0 +α ·A)|a〉 = 〈b|[A0 +α ·A, ô]|a〉. (5.23)

There are thus no corrections to electromagnetic amplitudes if the commutator
in (5.23) is equal to zero. Note also that any operator satisfying Eq. (5.19)
automatically has no diagonal matrix elements and has null expectation values
for an energy eigenstate.

In the case of PNC amplitudes and atomic EDMs, including (5.17) and
(5.18), the relevant electromagnetic interaction operator is the E1 operator, d.

For the static pseudoscalar interaction [Eq. (5.8) with ωφ = 0], ĥ = iγ0γ5,
and from Eq. (5.14), ô ∝ γ5. Since [γ5, r] = 0, the static pseudoscalar field
does not give rise to any observable P -odd transitions or EDMs in atoms in the
lowest order. Also, since the commutator is equal to zero, the correction to the
wavefunction (5.21) does not contribute to the Dirac charge or current densities
jµ.

The PV field (5.10) and the dynamic PS fields (5.1) will be examined in
detail in the rest of this chapter. Here we turn our attention briefly to some
of the other fields in the SME and discuss what possible parity-violating effects
they could give rise to in atomic systems.

The aµ term in the SME Lagrangian (5.4) is equivalent to interaction with a
constant vector potential and does not give rise to observable effects in atoms. It
is also easy to check directly that aµα = i[Ĥ, aµr] and that therefore constant
aµ contributions vanish in atoms. We note, however, that due to the CPT -
odd charge nonconservation — the fact that these fields may couple to different
fermion species with different interaction strengths or charges — interactions
involving more than one fermion species, such as in particle decays, may be
affected.

The ej interaction term can be expressed as ĥej = γ0e · p, which gives no
effects in atoms. This can be demonstrated as follows. Using the relations
[Ĥ,γ] = −2γ0p + 2meα, and [Ĥ, r] = −iα, which hold for the atomic Hamil-
tonian (5.13), this term can be expressed as

ĥej = e · [Ĥ, imer −
1

2
γ], (5.24)
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which is in the form of Eq. (5.19) and hence gives no atomic effects due to
Eqs. (5.21) and (5.23).

The d00 and djk terms in the SME (5.7) lead to interaction Hamiltonians

proportional to d00Σ̂ · p, and djkΣ̂jpk, respectively, where Σ̂ =

(
σ 0
0 σ

)
is the

Dirac spin matrix. These terms both lead to parity-violating effects in atoms.
We consider the d00 term for interactions with nucleons in Sec. 5.2.5. In the non-
relativistic limit, this term will not lead to any atomic effects via an interaction
with electrons, since in this limit it can be expressed ime[ĤNR,σ · r], where
ĤNR is the non-relativistic Schrödinger Hamiltonian for the atomic system in
question. The H0j , gjkm, and gj00 terms in (5.6) and (5.7) also lead to parity-
violating effects in atoms, though we do not consider these in this thesis.

Many of the terms in the SME Lagrangian (5.3) are proportional to p in
the non-relativistic limit and, because of the relation p = ime[ĤNR, r], give no
atomic effects in this limit. The c0j terms, which in the non-relativistic limit
scale as p, also produce P -odd effects due to relativistic corrections. Also, they
introduce direction and frame dependent anisotropies in the electron energy-
momentum relation [238, 279, 285].

The other terms in Eqs. (5.6) and (5.7) give rise to P -even interactions, and
do not contribute to atomic parity-violating effects. These terms do, however,
contribute to other interesting phenomena, such as bound-state energy shifts
and modulations in clock transition frequencies. For more information and
detailed discussions of many of these terms, see, e.g., Refs. [254–256, 284].

5.2.4 Perturbed wavefunctions and formulas for the atomic PNC am-

plitudes and EDMs

To analyse the dynamic effects, we apply first-order time-dependent perturbation-
theory (TDPT) with a slow turn-on of the perturbation (see, e.g., Ref. [267] for
further details), and find that the perturbed wavefunction corresponding to the
unperturbed atomic state |a〉 due to the considered dynamic interactions is given
by

|ã(t)〉 = |a〉+
∑
n

c(a)
n (t)|n〉, (5.25)

where

c(a)
n (t) =

∑
ı〈n|V̂ı|a〉

(Ea − En)2 − ω2
φ

[−i∂tf(t) + (Ea − En)f(t)] . (5.26)

Here, f(t) = ηωφ sin(ωφt) and V̂ = γ5 when we consider the PS γ5 interaction

(5.9), f(t) = ζme cos(ωφt) and V̂ = iγ0γ5 when we consider the PS iγ0γ5

interaction (5.8), and f(t) = b0 sin(ωbt) and V̂ = γ5 when we consider the
dynamic case of the PV γ5 interaction (5.11). The index ı denotes summation
over atomic electrons. In deriving Eq. (5.26), we have neglected the natural
widths of the considered states. While we do not consider these widths in this
chapter, they affect the phase in (5.26) when considering resonance phenomena,
and will be discussed in more detail in the next chapter.

Therefore, the general PNC amplitude can be expressed to first order in the
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PNC interaction as:

Ea→b =
∑
n,ı,

{
〈b|d|n〉〈n|V̂ı|a〉

(Ea − En)2 − ω2
φ

[−i∂tf(t) + (Ea − En)f(t)]

+
〈b|V̂ı|n〉〈n|d|a〉
(Eb − En)2 − ω2

φ

[i∂tf(t) + (Eb − En)f(t)]

}
. (5.27)

Note that Eq. (5.27) also applies for induced atomic EDMs, for which the initial
and final atomic states are identical; b = a.

It is now convenient to make one further approximation, namely that the
energy of the field particle is much smaller than the energy separation between
all opposite-parity states of interest, i.e. ωφ � |Ea,b −En| for all n. For a rela-
tively light field particle, there is no loss of generality in making this assumption,
except in the case where the atomic system of interest possesses close levels of
opposite parity, which will be investigated for Dy, Yb, and Ba in the coming
sections.

With this assumption we can present four comparatively simple formulas for
the dynamic PNC amplitudes and atomic EDMs induced by the pseudoscalar
interactions for both the γ5 and iγ0γ5 cases presented in Eqs. (5.8) and (5.9):

EPS
PNC(γ5) = ηωφ sin(ωφt)KPNC, (5.28)

EPS
PNC(iγ0γ5) =

ζωφ
2

sin(ωφt)KPNC, (5.29)

dPS
EDM(γ5) = −2iηω2

φ cos(ωφt)KEDM, (5.30)

and
dPS

EDM(iγ0γ5) = −iζω2
φ cos(ωφt)KEDM. (5.31)

For the PV interaction presented in Eq. (5.11), the induced PNC amplitude
is given by

EPV
PNC(γ5) = b0(t)KPNC, (5.32)

where in the static case b0(t) = b0 is a constant, and in the dynamic case
b0(t) = b0 sin(ωbt) oscillates. In the dynamic case, the PV γ5 interaction also
gives rise to an oscillating atomic EDM, given by

dPV
EDM(γ5) = −2ib0ωb cos(ωbt)KEDM. (5.33)

In the above equations, we have defined KPNC and KEDM as

KPNC =
∑
n,ı,

[
〈b|dı|n〉〈n|γ5

 |a〉
Ea − En

+
〈b|γ5

 |n〉〈n|dı|a〉
Eb − En

]
(5.34)

and

KEDM =
∑
n,ı,

〈a|dı|n〉〈n|γ5
 |a〉

(Ea − En)2
. (5.35)

These quantities will henceforth be referred to as the atomic structure coeffi-
cients.
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The formulas (5.28–5.33) provide the connection between the atomic-structure
calculations and the fundamental physics, which is necessary to extract quanti-
tative information about the fields in question. In deriving these equations, we
made use of the relation (5.15). Notice that the atomic structure coefficients are
the same for both the γ5 and iγ0γ5 cases. Note also that Eq. (5.35) shows that
no EDMs are induced by these fields in atomic states of zero angular momen-
tum, since in this case the scalar operator γ5 couples only intermediate states
of zero angular momentum, while the vector operator d cannot couple states of
zero angular momentum.

For the dynamic fields, in the case where ωφ ∼ |Ea,b − En|, for a particular
n, one has to use the complete equation (5.27) for the term corresponding to this
n. In this case, which can occur in atomic systems which possess a pair of close
opposite-parity levels, there may be additional enhancement from this term.
The rest of the amplitude can be given by one of equations (5.28–5.33) with
this particular term excluded. Note that in the limit that ωφ/b � |Ea,b − En|
for all n (i.e. a heavy field particle), the expression (5.27) vanishes to lowest
order.

In the non-relativistic limit, the matrix element of the γ5 operator reduces
to

〈b|γ5
ı |a〉

NR→ i(Eb − Ea)〈b′|σı · rı|a′〉, (5.36)

where the wavefunctions |n′〉 are the two-component Pauli spinors (as opposed
to the wavefunctions |n〉, which are four-component Dirac spinors). This term
scales as 1/c; the next lowest-order corrections are of order 1/c3. This means
that in the non-relativistic case, the operator γ5 can be replaced by the com-
mutator i[ĤNR,σ · r], and therefore, by Eqs. (5.19–5.23), the KPNC coefficients
(5.34) vanish in the non-relativistic limit.

In the calculations, this leads to significant cancellation between the 〈b|d|δa〉
and 〈δb|d|a〉 terms in the summation (5.34). If the calculations were exact, this
would eliminate the non-relativistic part of the amplitude and leave only the
relativistic corrections, constituting the correct result. In practice, however, the
cancellation leads to significant instabilities in the calculations. To bypass this
problem, we express the γ5 operator via the exact relation (proved below)

γ5
ı = i[Ĥ, Σ̂ı · rı] + 2γ5

ı K̂ı, (5.37)

which holds for the atomic Dirac-Coulomb Hamiltonian (5.13). Notice the sim-
ilarity between the commutator term in (5.37) and the non-relativistic expres-
sion (5.36). Matrix elements of this commutator term between atomic states
scale as 1/c, whereas for the γ5K̂ term they scale as 1/c3. Here,

K̂ =

(
k̂ 0

0 k̂

)
≡
(
−1− σ̂ · l̂ 0

0 −1− σ̂ · l̂

)
, (5.38)

where l̂ is the orbital angular momentum operator. Note that the spherical
spinors, Ωκ, are eigenstates of the k̂ operator, with eigenvalue κ [the Dirac
quantum number, κ = (l − j)(2j + 1)]:

k̂Ωκ = κΩκ.

The commutator in Eq. (5.37) cancels exactly in the amplitude, and does not
contribute; see Eqs. (5.19–5.23). We can, therefore, calculate the KPNC coeffi-
cients free of large cancellation by using only the last term in (5.37). Note that
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there are no such cancellations in the summation in Eq. (5.35) for the KEDM

coefficients, which can be calculated directly with high numerical precision.
To prove Eq. (5.37), first let

G = −2γ0γ5(γ0K) =

(
0 2K

2K 0

)
, (5.39)

L = i[H,Σ · r]. (5.40)

Then,

L = i

(
0 −2iσ ·L− 3i

−2iσ ·L− 3i 0

)
=

(
0 −2K
−2K 0

)
+ γ5

∴ γ5 = L+G (5.41)

(The above is valid for many-particle states, with the summation over electrons
suppressed).

5.2.5 Interactions with nucleons and via hadronic mechanisms

Note that PS and PV cosmic fields can also interact with the nucleus, giving rise
to nuclear anapole moments and nuclear Schiff moments, which contribute to
nuclear-spin-dependent (NSD) PNC amplitudes and atomic EDMs respectively,
see, e.g., [267, 268, 286]. In Ref. [267], it was shown that an interaction of the
form (5.9) can give rise to a nuclear anapole moment (AM), a P -odd, T -even
nuclear moment that normally arises due to parity-violating nuclear forces [14].

Here, we consider nuclear anapole moments induced by the interaction be-
tween nucleons and the static PV interaction of the form (5.11), which in the
non-relativistic limit reads [267]

ŴNR = bN0 σ · p/mN , (5.42)

where bN0 is the cosmic-field amplitude including the interaction strength be-
tween the cosmic field and a nucleon, and σ, p and mN are the spin, momen-
tum and mass of the nucleon. We also consider the interaction of the SME d00

term in (5.3) with nucleons. In the non-relativistic limit, this term leads to an
interaction Hamiltonian of the form

ŴNR = −dN00σ · p. (5.43)

Both interactions (5.42) and (5.43) will contribute to the nuclear AM. The
Hamiltonian representing the NSD PNC interaction of a valence electron with
the nuclear AM is given by

ĥAM =
GFKI√

2

α · I
I

κ ρ(r), (5.44)

where KI = (I + 1/2)(I + 1)−1(−1)I+1/2−lN , with lN being the orbital angular
momentum of the valence nucleon, I is the nuclear spin, and ρ is the nuclear
density [14] (see also [28]). The dimensionless constant κ = κa+κCF quantifies
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the magnitude of the AM, and has contributions both from parity-violating
nuclear forces, κa (the conventional AM), and from the interaction of the cosmic
field with the nucleons, κCF.

From Eq. (5.44), we see that the interaction of atomic electrons with the
cosmic-field–induced AM has exactly the same form as their interaction with the
conventional (parity-violating nuclear-force–induced) AM, the only difference
being the source of the moment. This means that no new atomic calculations
are required, and a limit on the magnitude of κCF, and hence bN0 and dN00, can
be extracted directly from existing experiments and calculations.

The magnitude of the AM, κCF, is related to the field parameters bN0 and
dN00 by the equation

κCF =
2
√

2παµN 〈r2〉
GFmN

(bN0 −mNd
N
00), (5.45)

where 〈r2〉 and µN are the mean-square radius and magnetic moment (in nuclear
magnetons) of the valence nucleon, respectively, and α ≈ 1/137 is the fine-
structure constant; see Refs. [14, 267] for more details. We take mN = 0.94
GeV, µp = 2.8, µn = −1.9, and 〈r2〉 = (3/5)r2

0A
2/3, where r0 = 1.2 fm and A is

the atomic mass number.
The dynamic PS and PV fields (5.9) and (5.11) also induce oscillating

anapole moments in atomic nuclei. This was considered in Ref. [267]. In the case
of a static PV cosmic-field–induced AM, one can immediately extract limits on
the coupling of the fields with protons via the existing NSD PNC calculations
and measurements in Cs [4] and Tl [34]. This is not the case for the dynamic
interactions. For this reason, we consider only the static case.

5.3 Methods for atomic structure calculations

We examine a number of different systems, and use different computational
methods for the ab initio relativistic calculations. We outline these briefly and
refer the reader to the relevant sources for more detailed information.

5.3.1 Single-valence electron systems

For atoms and ions with one valence electron above a closed-shell core, we
employ the correlation potential method [5, 199, 219, 244], as described in Ap-
pendix A.4.2. Core polarisation and the PNC and E1 interactions are included
via the time-dependent Hartree-Fock (TDHF) method [5, 199, 219, 244], as de-
scribed in appendix A.6.1. Note that in solving the TDHF equations (A.40),
we have neglected the contribution from ωφ, i.e. we have assumed that ωφ �
|Ecore − Ea,b|. The core excitation energy is very large, so this should be valid
in all cases.

The PNC and EDM atomic structure coefficients (5.34) and (5.35) can then
be calculated using single-particle energies and wavefunctions, with the opera-
tors dı and γ5

ı replaced by the effective single-particle operators including the
core-polarisation corrections:

∑
ı dı → d + δV̂E1,

∑
ı γ

5
ı → γ5 + δV̂γ5 . This

is how we calculate the KEDM values, however, for the KPNC values we use a
slightly different method due to the instabilities caused by the large cancellation
discussed previously.
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By expressing the second term on the right-hand side of Eq. (5.37) as

2γ5K̂ = −2γ0γ5(γ0K̂),

and noting that single-particle states are eigenstates of γ0K̂ (with eigenvalue
κ), we can use Eq. (5.15) to express the PNC (single-particle) matrix elements
as

〈ψn|2γ5K̂|ψa〉 =
−κa
2me

(En − Ea)〈ψn|γ5|ψa〉. (5.46)

Upon substitution into the summation for KPNC, we can invoke the closure
relation and the amplitude for single-particle states reduces to

KPNC =
1

me
(κb + κa)〈ψb|γ5(d+ δVE1)|ψa〉, (5.47)

where we have neglected the core polarisation due to the 2γ5K̂ operator, since it
is highly suppressed. This expression requires no summation over intermediate
states, does not contain significant cancellation, and can be calculated with
relatively high accuracy. We include correlations by using the BOs ψa and ψb
for the valence states a and b in Eq. (5.47).

For the KEDM coefficients, the first term on the right-hand side of Eq. (5.37)
does not cancel. In fact, this term dominates the amplitude [since it leads almost
directly to the non-relativistic approximation (5.36)] and scales as 1/c, whereas

the second term scales as 1/c3. Inserting γ5 ≈ i[Ĥ, Σ̂ · r] [see Eq. (5.36) and
(5.37)] into Eq. (5.35), we see that the KEDM coefficients for 2S1/2 states are ap-
proximately proportional to the static dipole polarisability, with corrections on
the order of (1/c)3. The constant of proportionality is determined by Eq. (5.37)
and the angular integrals [287]:

KEDM(z) ' −i
∑
n

〈a|dz|n〉〈n|Σ̂ · r|a〉
Ea − En

≈ i

2e
α0, (5.48)

where the scalar electric dipole polarisability, α0, is given by

α0 = − 2e2

3(2Ja + 1)

∑
n

|〈a||rz||n〉|2
Ea − En

, (5.49)

where 〈a||rz||n〉 is the z component of the reduced matrix element of the r
operator. [Equation (5.48) relies on the fact that the radial integrals and energies
depend only on the n, l quantum numbers, and not on j, in the non-relativistic
limit.] This can be used as an independent test of the calculations. Rougher
(and far less accurate) relations can also be derived for other states, e.g. the
2P1/2 ground state of Tl, which are useful for order-of-magnitude estimates.

It is therefore an interesting possibility to consider effects arising in Ryd-
berg atoms—atoms which contain one electron in a very highly excited state.
Such atoms have hugely enhanced polarizabilities, and will therefore have cor-
respondingly enhance effects due to parity-violating cosmic fields.

Note that in the methods described above we have not included the core
polarisation contribution that comes from the simultaneous action of the E1 and
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PNC fields, the so-called “double core polarisation”, see Ch. 4. Core polarisation
amounts to only a small correction to the quantities considered here, so the even
smaller double core polarisation can be safely neglected in most cases. In the
case of Tl, however, where the single-particle approach is less valid, this may
have a significant impact on the accuracy.

5.3.2 Two valence electron atoms

We treat Yb and Ba as systems with two valence electrons above a closed shell
core, and follow closely the methods employed recently [40, 123] to calculate con-
ventional PNC effects in these atoms. We make use of the combined configura-
tion interaction (CI) and many-body perturbation theory (MBPT) method de-
veloped in Ref. [225]; the specific form that we use is described in Appendix A.7.
Interactions with external fields and core polarisation are taken into account us-
ing the TDHF method as above.

We also introduce a scaling parameter into the correlation potential, as in
Ch. 3: Σ̂1 → λlΣ̂1 in Eq. (A.48), where λl can take different values for different
values of orbital angular momentum, l, (s, p, d etc.) and λl ≈ 1. The scal-
ing parameters serve two purposes. Firstly, since the single-particle energies in
Eq. (5.46) are relatively sensitive to λl, whereas the radial integrals are compar-
atively insensitive, we can use this as a test of the stability of the calculations.
We do this and find satisfactory stability for both the matrix elements and the
overall PNC amplitudes. Secondly, in the case of the PNC transition in Yb, a
system that possesses a pair of relatively close levels of opposite parity, we can
use the scaling parameters to fit the important energy differences to the exper-
imental energies, as was done in Sec. 3.4. This is important, since even modest
errors in individual energy levels may lead to an error of orders-of-magnitude
in an energy interval when it is particularly small. See Sec. 3.4 for a detailed
discussion on this point.

The matrix elements are then computed from the sum of the single-particle
contributions. For the single-particle contributions, we use Eq. (5.46), which
removes all significant cancellation into a small factor ∼ 1/c3 [two factors of c
come from the coefficient me in (5.46), the third comes from the lower (small)
component of the Dirac radial wavefunction].

Note that we can also use Eq. (5.36) to approximately express Eq. (5.46) as

〈ψn|2γ5K̂|ψa〉 ≈
−iκa
2me

(En − Ea)2〈ψ′n|σ · r|ψ′a〉, (5.50)

which scales as 1/c (the next lowest corrections are of order 1/c3). Equations
(5.46) and (5.50) have very different radial integrals; as such, performing the
calculations using both these equations serves as a good numerical test of our
method. We find good agreement between both the matrix elements and the
amplitudes calculated using Eqs. (5.46) and (5.50). This is important, since it
justifies neglect of core polarisation due to the 2γ5K̂ operator.

5.3.3 Dysprosium

The feature of Dy that makes it a particularly interesting system for the study
of atomic PNC is the existence of two nearly degenerate states of opposite parity
and the same total angular momentum, J = 10, at E = 19797.96 cm−1. We
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use the notation A for the even-parity state and notation B for the odd-parity
state, following Ref. [89]. The PNC experiment in Dy is different to those done,
for example, in Cs, and it is the quantity 〈A|γ5|B〉 that is of most interest.
This is because, in Dy, the mixing of the opposite parity A and B states is
observed directly, whereas in in the other experiments it is transitions between
states of the same parity that are observed [89] (the parity-violating part of
these transitions is enabled by a mixing of many opposite-parity states).

The method we use for the calculations in Dy follows almost exactly previ-
ous calculations of conventional PNC effects in this system [91], with the only
exception being the interchange of the operator of the electron-nucleus weak
interaction (5.12) with those for the parity-violating interactions with cosmic
fields, (5.9) and (5.11). We use the particular CI method described in much
greater detail in Ref. [288]. To construct the single-electron orbitals, we use a
V N potential, where N = 66 is the total number of electrons.

A different V N Hartree-Fock potential is used for each different configura-
tion, then the valence states found in the Hartree-Fock calculations are used
as basis states for the CI calculations. This helps account for the fact that
single-electron states actually depend on the configurations. While it is pos-
sible to account for this dependence within the CI calculations, it requires a
complete set of single-electron states. These would then be used to construct
the many-electron basis states by redistributing the valence electrons over the
single-electron basis states. Then the actual many-electron states are found by
diagonalizing the matrix of the effective CI Hamiltonian [289]. This approach
works well in the case of a few valence electrons, e.g. neutral Ba and Ra as
discussed above. However, for the twelve valence electrons of Dy, it would lead
to a matrix of enormous size making it practically impossible to saturate the
basis with limited computing resources. The results with an unsaturated basis
are unstable and strongly depend on where the basis is truncated. Therefore, it
is preferable to account for the differences in the configurations at the Hartree-
Fock, rather than the CI, stage of the calculations.

After the self-consistent Hartree-Fock procedure is done for each necessary
configuration, the effective CI Hamiltonian for the valence states of Dy, with
M = 12 valence electrons, is expressed as

Ĥeff =

M∑
ı=1

ĥ1(rı) +
∑
<ı

e2

rı
, (5.51)

where
ĥ1 = α · p+me(γ

0 − 1)− V nuc + UHF + δVp. (5.52)

Here UHF is the Hartee-Fock potential due to the N −M core electrons. We do
not use the ab initio correlation potential as described above, instead it is the
term δVp in Eq. (5.52) that simulates the effect of valence-core correlations. It
is known as the polarisation potential, and has the form

δVp = − αp

2(r4 + a4
0)
, (5.53)

where αp quantifies the polarisation of the core, and a0 is a cut-off parameter,
for which we use the Bohr radius. The term αp is treated as a parameter and
is scaled to reproduce the correct experimental energies. The effect that adding
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Table 5.1 Calculations of the PNC and EDM atomic structure coefficients [jz = min(ja, jb)] for several atomic
systems. Valid in the case that ωφ � |Ea,b − En|. Values are presented in atomic units.

PNC EDM
Transition KPNC (i10−6) State KEDM

H 1s–2s 0.1447(2) 1s 0.0164(1)
Li 2s–3s 0.219(3) 2s 0.60(1)
Na 3s–4s 0.224(4) 3s 0.61(1)
K 4s–5s 0.242(4) 4s 1.09(5)

4s–3d3/2 −0.307(6)
Cu 4s 0.16(3)a

Rb 5s–6s 0.247(5) 5s 1.22(8)
Ag 5s 0.17(5)a

5s–4d3/2 −0.30(1)
Cs 6s–7s 0.256(5) 6s 1.6(2)

6s–5d3/2 −0.22(3)
Ba 1S0–3D1 −0.5(1)
Ba+ 6s–5d3/2 −0.02(1)
Yb 1S0–3D1 −8(2)
Au 6s 0.12(4)a

Tl 6p1/2–6p3/2 0.22(5) 6p1/2 0.2(1)
Fr 7s–8s 0.253(6) 7s 1.3(2)

7s–6d3/2 −0.25(3)
Ra+ 7s–6d3/2 −0.08(3)

a From polarisability calculations [290–292].

or removing basis configurations, and making small changes in the values αp,
has on the amplitude is a good way to test the accuracy of the calculations.

Since the states of interest in Dy are practically degenerate, the commutator
term in Eq. (5.37) does not contribute to the matrix element. We therefore
calculate the matrix elements of the PNC interaction directly from the single-
particle contributions using Eq. (5.46). We use the same configurations and
values for αp (≈ 0.4 a.u.) as in Ref. [91].

5.4 Results and discussion

5.4.1 Values and accuracy of the atomic structure coefficients

Results of our calculations for the atomic structure coefficients KPNC and KEDM

[defined in equations (5.28) through (5.35)] are presented in Table 5.1. We
present z-components, with jz = min(ja, jb).

In order to estimate the uncertainty, we calculate the values KPNC without
including any correlations, including correlations to second-order (Σ(2)), and
including correlations to all-orders (see Sec. 5.3). We take the all-order results
as the midpoint, and estimate the uncertainty as the difference between this and
the pure Hartree-Fock (no correlations) calculations. The second-order results
are used as an extra test; the deviation of the second-order results from the
all-order ones is significantly smaller than the assumed uncertainty. We also
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examine the effect that including core polarisation has on the amplitudes and
note that its effect is also smaller than the assumed uncertainty.

Note that we treat Tl here as a single valence electron system, where the
6s2 electrons are treated as core states. In order for this treatment of Tl to
yield accurate results one needs to take into account many higher-order cor-
relation corrections, such as ladder-diagrams [190]. In particular, the double
core polarisation may give a significant contribution in this approximation, see
Ch. 4. Therefore, for the Tl KPNC we use only the second-order correlation po-
tential, and the uncertainty is taken as the size of these correlation effects. The
uncertainty attributed to Tl takes into account the omitted core-polarisation
effects. An alternative method for calculations in Tl is to treat it as a three-
valence-electron system, and use the CI+MBPT method, see, e.g., [181]. In this
approach, the double core polarisation is taken into account automatically. The
trivalent CI+MBPT method is significantly more computationally demanding
than the methods we employ in this chapter, and is not necessary at the cur-
rently desired level of accuracy; more complete calculations can be performed
when further experimental work in this area is undertaken.

For H, we perform the calculations both using exact Dirac-Coulomb wave-
functions and numerical wavefunctions including finite-nuclear-size effects. The
difference between these two approaches is negligible at the desired accuracy.
The 〈2s|γ5|2p〉 matrix element is almost identically zero numerically (without
including radiative corrections). This means that despite being a seemingly
good candidate for a Dy-type stark-interference experiment, where the PNC
matrix element is measured directly (see [89]), H is unlikely to yield informa-
tive results in this case. The uncertainty estimates in the H 1s–2s KEDM value
comes mainly from a truncation of the basis used for the summation, and the
uncertainty for the 1s KPNC value reflects the omission of radiative quantum
electrodynamics effects, which become important at this scale (∼ 1/c3).

In the case of atomic EDMs, there is no cancellation as for the KPNC values,
and these magnitudes are comparatively stable. The accuracy of these calcula-
tions is expected to be relatively high, with the dominating uncertainty coming
from the inclusion of electron correlations. We take as an estimate of the uncer-
tainty the difference between the calculations performed with the second-order
and the all-order correlation potential. As noted above, the expression for the
EDM atomic structure coefficients (5.35) can be reduced to a form very similar
to that of the electric dipole scalar polarisability (5.48). We use this fact as a
test of our calculations and find excellent agreement using published polaris-
ability values; better than 1% for Li and Na, and better than 5% for most other
atoms, see, e.g., [293]. The decline in agreement for the higher Z systems is due
to the larger role of relativistic effects here, since Eq. (5.48) is a non-relativistic
approximation.

From the results in Table 5.1, we see that the magnitudes of PNC amplitudes
in general increase with increasing atomic mass. This can be understood as
a relativistic effect, since the amplitude vanishes in the non-relativistic limit.
However, we note that the magnitudes increase considerably more slowly with
Z than the Z3 dependence of conventional NSI PNC effects induced by Z0-
boson exchange between atomic electrons and nucleons [24, 294]. This means
that light atoms may also be suitable candidates for searches of pseudoscalar
and pseudovector cosmic-field–induced effects.

Since the considered interaction is one with an external cosmic field, as op-
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Table 5.2 Matrix elements of the 2γ5K̂ operator for Ba, Ra, Dy, and Yb between nearly-degenerate opposite-
parity levels.

A B ∆EBA (cm−1) [188] 〈B|2γ5K̂|A〉 (i a.u.)a

Ba 5d2 (1D2) 5d6p (1Do
2) −12.34 0.3(1)× 10−9

Dy 4f105d6s (J = 10) 4f95d26s (J = 10) 0.7(2)× 10−8

Yb 5d6s (3D1) 6s6p (1P o1 ) −579.12 0.29(6)× 10−8

a For ease of comparison with the literature, note that 0.7× 10−8 a.u. = 50 MHz.

posed to a nuclear-sourced field as in the case of conventional atomic PNC,
the amplitudes are not necessarily restricted by the value of the wavefunctions
on the nucleus. In conventional PNC, this has the effect of greatly suppress-
ing contributions from higher orbital angular momentum (l) states, in which
electrons do not spend as much time near the nucleus. This limits the magni-
tude of the PNC effect in many transitions, such as the A–B matrix element
in Dy, that have otherwise ideal conditions (high nuclear charge Z, very close
opposite-parity levels). Such restrictions were noted very early, see, e.g., [27]. In
the cosmic-field–induced PNC effect, however, this restriction does not apply.

For the dynamic interactions, the results presented in Table 5.1 are valid
only in the case that ωφ � |Ea,b − En|. As stated above, this should generally
not be a problem, except for when there exists a pair of close opposite parity
levels in the summation (5.27). Such a pair of close levels appears in Ba, Dy, and
Yb. In Table 5.2, we present calculations of the 2γ5K̂ matrix element between
states that correspond to close levels of opposite parity in these atoms.

For Dy, it is actually the quantity 〈B|γ5|A〉, as opposed to the PNC ampli-
tude EPNC, that is directly of interest, since the transitions between B and A
are directly measured in the Dy experiments. To determine the uncertainty in
this quantity, we examine the effect of removing configuration states from the
basis. Note that in the conventional PNC case, the 〈A|ĥQW |B〉 matrix element
is highly dependent on the configurations used [91]. We perform the calculations
including only the leading two configurations for each state, as well as including
all twelve of the configurations considered in Ref. [91], and many combinations
in between. We find, in fact, that this makes little difference to the final ampli-
tude, meaning it is quite stable. We take the uncertainty in this value to cover
the range of values obtained between using only the leading two configurations
for each state and using all twelve considered basis configurations. Despite mak-
ing relatively large changes to the energies, modest modifications to αp make
only small changes to the amplitude; smaller than the assumed level of accuracy.

5.4.2 Limits on the interactions of a pseudovector cosmic field

For the static case, the PV interaction will manifest itself as a small addition
to the PNC amplitude of a transition between two states of the same nominal
parity. Therefore, by combining the results of the conventional (QW induced)
PNC experiments and calculations with the calculations of the cosmic-field–
induced PNC amplitude [given by Eq. (5.32) and Table 5.1], it is possible to
extract limits on the values of the PV cosmic-field coupling constants b0. We
present these limits in Table 5.3.
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Table 5.3 Comparison of calculated and observed PNC amplitudes in Cs, Tl and Yb, and the relevant weak
matrix element in Dy, and extraction of limits on the electron–cosmic-field interaction parameter be0.

EQWPNC (i10−11 a.u.)
Transition Experiment Theory |be0| limit (GeV)

Cs 6s – 7s 0.8353(29) [4] 0.8428(38) [11] 2×10−14

Tl 6p1/2 – 6p3/2 24.8(2) [34] 25.6(7) [39] 2×10−12

Yb 1S0 – 3D1 87(14) [36, 85] 110(14) [40] 2×10−12

〈A|ĥQW |B〉 (i10−16 a.u.)a

Experiment Theory |be0| limit (GeV)
Dy 3.5(4.5) [89] 6(6) [91] 7×10−15

a 3.5× 10−16 a.u. = 2.3 Hz; 6× 10−16 a.u. = 4 Hz.

The most stringent limit comes from the results in Dy. This is due mainly
to the significantly low absolute uncertainty in both the theoretical and exper-
imental limits on the ĥQW matrix element.

We have used the available NSD PNC measurements for Cs and Tl to extract
limits on the constants bp0 and bn0 that quantify the interaction strength of a PV
cosmic field (5.42) with protons and neutrons, respectively. We also use these
measurements to constrain the constants dp00 and dn00 that appear in (5.43),
which quantify the interaction strengths of protons and neutrons with the SME
dµν tensor field (5.7). We present these limits in Table 5.4. In extracting the
limits, we have taken the values of the conventional (nuclear-forced induced)
AM as κa = 0.19 and assumed a 30% uncertainty for the nuclear theory for Cs,
and κa = 0.17 with 60% uncertainty for Tl, see, e.g., Ref. [28]. The nuclear
spin in both Cs and Tl is primarily due to the valence protons. For Tl, we
use a single-particle picture and therefore extract limits for the proton only.
For Cs, we use the expectation values of the spin occupation from Ref. [275] to
determine limits for both protons and neutrons.

These field-nucleon coupling limits are to be compared with the field-electron
coupling limits obtained from PNC amplitude measurements and from direct
determination of weak interaction matrix elements, which are tabulated in Ta-
ble 5.3. The latter limits are by far the more stringent. Note that ongoing AM
measurements with Fr, Yb, and BaF will also lead to limits on PV cosmic-field
couplings to protons and neutrons [36, 83, 85, 124, 128].

Table 5.4 Theoretical and observed values for the nuclear AM constant κa for Cs and Tl, and the extracted
limits on the proton– and neutron–cosmic-field interaction parameters bp,n0 and dp,n00 .

κa b0 limits (GeV) d00 limits
Observed Theory |bp0| |bn0 | |dp00| |dn00|

133Cs 0.364(62) [4, 48] 0.15 — 0.23a 4×10−8 2×10−7 5×10−8 2×10−7

203,205Tl 0.22(30) [34, 118] 0.10 — 0.24b 8×10−8 9×10−8

a Refs. [110, 113, 115, 116]
b Refs. [110, 113, 116]
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5.5 Conclusion

In this chapter, relativistic calculations were performed for parity nonconserva-
tion amplitudes and atomic electric dipole moments induced by the interaction
of pseudoscalar and pseudovector cosmic fields with atomic electrons for H, Li,
Na, K, Cu, Rb, Ag, Cs, Ba, Ba+, Dy, Yb, Au, Tl, Fr, and Ra+. We have shown
that a static pseudoscalar cosmic field cannot give rise to observable P -odd ef-
fects in atoms in the lowest order, but in contrast, a static pseudovector cosmic
field can. Candidates for such cosmic fields include dark matter (such as axions)
and dark energy, as well as a number of more exotic sources, e.g. those described
by Lorentz-invariance violating standard-model extensions [255].

For the case of a static pseudovector field, these calculations can be com-
bined with existing parity nonconservation measurements to extract limits on
the strength of the electron–cosmic-field coupling. From existing data and cal-
culations, we find that Dy gives the most stringent limit for the interaction
strength between the temporal component of the pseudovector field and the
atomic electrons: |be0| < 7 × 10−15 GeV in the laboratory frame of reference
(1σ). Also, using the existing measurement of the nuclear anapole moment of
Cs and the limit on the value of the Tl nuclear anapole moment, in conjunc-
tion with their respective theoretically predicted values, we extract limits on
the strength of the proton–cosmic-field couplings bp0 and dp00. By taking into ac-
count nuclear many-body effects [275], we also extract 1σ limits on the strength
of the neutron–cosmic-field couplings. We find that the more stringent limits
of |bp0| < 4 × 10−8 GeV and |dp00| < 5 × 10−8 for protons, and |bn0 | < 2 × 10−7

GeV and |dn00| < 2× 10−7 for neutrons come from the anapole moment results
for Cs. These limits on the temporal components b0, which are derived from
P -odd fermion effects, are complementary to the existing limits on the interac-
tion of the spatial components b of a static PV field with electrons, protons, and
neutrons, which are derived from the P -even fermion effects, see, e.g., Ref. [284].

Finally, we mention that cosmic-field searches need not be restricted only to
atomic systems. Searches for cosmic-field–induced electric dipole moments can
also be performed in solid-state systems. Static electron electric dipole moment
experiments in ferro-electrics are discussed in Refs. [173, 174], for instance, and
solid-state systems have already been proposed for use in the detection of axion
dark matter (see, e.g., Refs. [295, 296]). We also mention that transient electric
dipole moments may also be induced by cosmic fields in the form of topological
defects [297]. Topological defect dark matter can also be detected with a global
network of detectors that can be used to search for coherent-in-time signals,
such as with magnetometers [298] or atomic clocks [299]. Note that such a
global network of atomic clocks already exists in the form of GPS satellites,
meaning that this form of dark matter can be searched for by simply analysing
the existing GPS data [299].
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CHAPTER 6:
New Methods for Axion Dark

Matter Detection

In this chapter, I expand on the general results of the previous chapter,
applying them to the specific case of axion dark matter in more detail. I
present our calculations of the parity and time-invariance violating effects
(specifically, electric dipole moments) that an axion field would induce in
atoms. Crucially, the effects considered here are linear in the small pa-
rameter that quantifies the interaction strength between the dark matter
particles and ordinary matter particles; most current dark matter and ax-
ion searches rely on effects that are proportional to quadratic and higher
powers of this parameter. Oscillating electric dipole moments have the
potential to be measured with very high accuracy, and experimental tech-
niques in this field are evolving fast, making this a particularly exciting
area for potential discovery in the near future. Pairs of closely spaced
opposite parity levels that are found in atomic dysprosium and certain
diatomic molecules may also lead to a significant enhancement in these
effects. Note that in this chapter, I depart from the usual convention
of atomic units, and employ the more standard natural relativistic units
(~ = c = 1), in order to aid with comparisons with other works.

6.1 Introduction

One of the most important unanswered questions in fundamental physics today
is the so-called strong CP problem. This refers to the puzzling observation
that quantum chromodynamics (QCD) does not appear to violate the combined
charge-parity symmetry (CP ), despite there being no known theoretical reason
for its conservation, see, e.g., Refs. [303–308]. One compelling resolution to this
problem comes from the Peccei-Quinn (PQ) theory, in which an additional global
U(1) symmetry, known as the PQ symmetry, is introduced into the standard
model (SM) QCD Lagrangian and is subsequently broken both spontaneously
and explicitly [305, 306] (see also [309–312]). The breaking of the PQ symmetry
gives rise to a pseudoscalar boson known as the axion. This particle causes
the QCD CP symmetry breaking parameter to become effectively zero, thus in
principle alleviating the strong CP problem. For more detail on this topic, the
reader is directed to the review in Ref. [313] (see also Refs. [73, 314]).

Another crucial outstanding problem in modern physics is the question of
dark matter (DM). The astrophysical evidence for the existence of DM is over-
whelming, see, e.g., Refs. [269, 315]; however, its composition is not known, and
despite years of searching no confirmed terrestrial observation has yet been made
(see Ch. 7 for a discussion of a possible exception). There have been many sug-
gestions put forward that attempt to provide a theoretical framework for DM,
though no single theory is a clear leading candidate, see, e.g., Refs. [73, 269].
What we do know is that the energy content of the universe is dominated by DM
(∼ 23%) and dark energy (∼ 73%), see, e.g., Ref. [316]. Dark energy is proposed
to account for the observed accelerating expansion of the Universe [317, 318];
even less is known about the composition of dark energy than of DM.
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The axion, since emerging as a compelling solution to the strong CP prob-
lem, has in fact been identified as a promising DM candidate [319] (see also
[320]). Axions may constitute a large fraction of the DM in the observable uni-
verse. Thus axions, if detected, would have a real potential to resolve both the
DM and strong CP problems. Many methods have been proposed and applied
to the search for axions; for a recent review, I direct the reader to Ref. [321]
(see also Refs. [73, 313, 322–324]).

The axion, though neutral, couples to photons via an effective electromag-
netic anomaly [325]. This coupling is used in many currently running experi-
ments to search for axions and other axion-like particles (ALPs) [325, 326]. Such
experiments include attempts to convert DM axions into photons in the presence
of very strong magnetic fields (e.g. the ADMX experiment [327]), as well as the
“light shining through a wall” experiments, in which photons traverse an optical
barrier by converting to axions and back again (e.g. ALPS [328]); see also the
CAST [329] and IAXO [330] experiments. See, e.g., Ref. [322] for a review on
searches for axion and ALP DM. These experiments rely on effects proportional
to quadratic or higher powers of the axion-photon coupling constant, which, due
to the anomalous nature of the interaction, is exceptionally small.

The nature of the effect that such searches exploit means that these exper-
iments are useful for detecting axions only over a limited range of the relevant
parameter space. There is no a priori reason to exclude the possibility of par-
ticles that lie outside this region; simultaneous experiments are necessary to
search for axions and ALPs through as large a range of parameters as possible.

The prospect that atomic systems could be used as a probe for DM, axions,
and other cosmic fields has been considered extensively in the literature, see,
e.g., Refs. [258, 261, 267, 272, 285, 286, 295, 299, 331, 332]. Signatures of
scalar DM (including axions) can also be sought using highly precise atomic
spectroscopy, as recently considered in Ref. [333]. While the effects induced in
atoms by such a cosmic field may be small, the advantage of using atoms is that
atomic physics methods are highly advanced, and both the experimental and
theoretical accuracy, and hence sensitivity, can be high.

6.2 Theory

Axions have the following effective couplings to standard model particles:

L = gγ
a

fa
Fµν F̃

µν (6.1)

+ gg
a

fa
GcµνG̃

µν
c (6.2)

+ gf
∂µa

fa
ψ̄fγ

µγ5ψf , (6.3)

where F and G are the field strength tensors of quantum electrodynamics (QED)
and QCD, respectively, ψf is the fermion wave function, a is the axion(-like
particle) field, and fa is the axion decay constant (unless otherwise stated, we
work in units ~ = c = 1), see, e.g., Refs. [268, 286]. The parameters gγ , gg, and
gf are model-dependent constants that quantify the strength of the coupling
to photons, gluons, and fermions, respectively, and are typically taken to be of
order unity. An exception is the electron coupling constant ge, which in certain
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models (e.g., the KSVZ model [309, 310]) can be set to zero at tree level. In
this case ge ∼ 10−3 due to one-loop corrections; other models still allow ge ∼ 1.
Axion-like particles are assumed the have the same general couplings, with fa
a free parameter.

The axion field can be taken as a classical, nonrelativistic, field such that for
a particular choice of phase it can be expressed as

a(r, t) = a0 cos(mat), (6.4)

where ma is the axion mass. The axion mass is typically expected to lie within
one of two windows; the “classical” region, with 10−6 eV . ma . 10−4 eV, or
the “anthropic” region, with 10−10 eV . ma . 10−8 eV, see, e.g., Ref. [313].
These regions correspond to oscillations of (6.4) on the order of GHz and kHz,
respectively.

For the standard “QCD axion”, the axion decay constant is related to its
mass ma ∼ Λ2

QCD/fa via the formula [334]

1

fa
≈ 2× 10−20 eV−1

( ma

10−4 eV

)
. (6.5)

Making the further assumption that axions saturate the local DM density, one
can equate the axion potential with the known DM energy density:

1

2
m2
aa

2
0 = ρDM ≈ 0.3 GeV cm−3. (6.6)

From this, it is seen that (for a QCD axion) the factor a0/fa that appears in
the calculations is independent of ma. With these assumptions one can take
this factor to be

a0

fa
≈ 4× 10−19, (6.7)

which we use for estimates of the size of the considered effects.
It should be noted, however, that the results in this chapter are not restricted

to the typical QCD axion. We use the word axion to refer to any axion-like
particle (ALP). In this case, the equations (6.5) and (6.7) do not strictly apply,
and the parameters a0 and fa can take on any values (that are not already
excluded experimentally). If the ALPs constitute a large portion of the DM
in the galaxy, however, it is still the case that a0 ∼ 1/ma, due to Eq. (6.6).
These differences mean that the effects due to ALPs may actually have slightly
different scaling with ma than those due to QCD axions. Assuming axion-like
particles saturate the DM density of the galaxy, the amplitude parameter can
be expressed as

a0 = 2.15× 10−12
(ma

eV

)−1

GeV, (6.8)

where the factor g/fa is a free parameter of the theory.

6.2.1 Atomic and molecular EDMs

It worth breaking briefly to discuss how EDMs of atoms and molecules arise.
This is discussed in Sec. 2.4.2 of this thesis; for a recent review, we direct the
reader to Ref. [3]. The EDM of an electron can induce an EDM in an atom or
molecule. In fact, experiments using ThO currently place the best limit on the
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electron EDM: |de| < 8.7× 10−29 e cm [146] (see also [144, 150]). The atomic
EDM due to the electron EDM arises both from the sum of the intrinsic EDMs
of all the electrons as well as from from the mixing of opposite parity states
induced by the interaction of the electron EDM with the atomic field. In heavy
systems, the contribution from the mixing of opposite parity states dominates,
and the contribution from the sum of electron EDMs can be safely ignored.
In the nonrelativistic limit, both such contributions go to zero. As such, an
entirely relativistic treatment of the electron wavefunctions is necessary. For a
more detailed discussion see, e.g., Ref. [28].

An EDM of the nucleus is completely unobservable in neutral systems due
to the total screening of the external electric field by the electrons; this is known
as the Schiff theorem [140]. However, observable atomic and molecular EDMs
may also be produced due to the interaction of the electrons with higher-order
P -and T -violating nuclear moments, such as the Schiff and magnetic quadrupole
moments, which will be discussed in Sec. 6.4.1; see also Sec. 2.4.2.

6.2.2 Oscillating EDMs

Studies of static EDMs have gained much attention over the past few decades, as
discussed in Sec. 2.4.2 (see also, e.g., Ref. [28, 135]). The dynamic EDM effects
we consider here, however, require a completely different style of experiment.
Measurements of the frequency and amplitude of the oscillationg EDMs would
enable one to extract values (or at least limits) on the relevant field parame-
ters [268, 286, 295]. For example, if we consider an axion field, a determination
of the frequency of oscillations would lead directly to a value for the mass of
the particle. Combined with this information, the amplitude of these oscillatory
effects would lead to a determination of the coupling constants.

Axions lying in the classical or anthropic regions would lead to oscillations
with frequencies between GHz and kHz, respectively. For the case of axions, the
coherence time, τc ∼ 2π/mav

2, may be estimated from ∆ω/ω ∼ ( 1
2mav

2/ma) ∼
v2, where a virial velocity of v ∼ 10−3 would be typical in our local Galactic
neighbourhood, and the frequency is set by the axion mass: ω ≈ ma [286, 295].

The amplitudes of the oscillating EDMs induced by axions and other cosmic
fields are likely to be extremely small. Given that even a static EDM has
not yet been observed, the measurement of such dynamic EDMs seems quite a
daunting task. It should be noted, however, that in some respects, the search
for oscillating EDMs may be significantly easier. One of the major sources of
systematic uncertainties in EDM experiments comes from the requirement to
reverse the electric field; the field reversals are always imperfect, and the act of
reversing the field creates stray currents, heat, and magnetic fields which can
limit the experimental sensitivity. To search for oscillating EDMs, however, no
such field reversals are required; the EDM itself does the reversing for us. Also,
since the frequency of the EDM (should it exist) is set by cosmic parameters
that are unrelated to the laboratory set up, it would be difficult for experimental
systematics to mimic the effects.

Such EDMs could potentially be measured using normal EDM techniques,
and searching for a temporal oscillation in the measured energy shift. However,
it may be optimal to exploit the oscillating nature of the effects to maximise
the sensitivity. For example, it may be possible to use optical cavity interfer-
ometry, which, when tuned to the correct frequency, would allow a build up

91



6.3. Axion–electron interaction B M Roberts

of phase over several oscillations. Such a scheme was suggested in Ref. [286].
Also, by using magnetic fields to Zeeman tune the atomic or molecular energy
levels into a resonance with the axion mass it may be possible to gain a signifi-
cant enhancement. Another approach is to use a nuclear (or electron) magnetic
resonance-type search, where the magnetic field is used to tune the Larmor fre-
quency of a spin-polarised sample to the axion-field frequency. The resulting
magnetisation can be observed using highly-precise magnetometry. Though this
could be done with an atomic or molecular beam, or with trapped particles, the
use of solid-state systems allows for a large enhancement due to the spin coher-
ence times, and large number (spin) densities. Such an experimental scheme
has been considered in Ref. [268, 295].

6.3 Axion–electron interaction

The interaction of axions with atomic or molecular electrons, Eq. (6.3) with
ψf = ψe the bound-state electron wave function, leads to the mixing of opposite-
parity states, which in-turn leads to the production of an oscillating atomic
or molecular EDM. Such effects were considered in Ref. [267]. We note that
there are also other observable effects also due to the axion–fermion coupling
(6.3), including parity-conserving M1 atomic transitions [335], parity-violating
E1 atomic transitions [251, 252], and spin-precession effects [267]. These effects
can also arise due to the axion–nucleus coupling, via the interaction in Eq. (6.2).
Current limits on the axion (and ALP) coupling to electrons from astrophysical
and laboratory-based searches are shown graphically in Fig. 6.1.

Adapting the general formula derived in the previous chapter [Eq. (5.27),
page 76] to the specific case of an axion–induced atomic EDM, and noting
that the relevent electron matrix element is complex and hence anti-Hermitian
(i.e. 〈i|γ5|f〉 = −〈f |γ5|i〉), we arrive at the expression

Dv = 2im2
a

a0

fa

∑
n

〈v|d|n〉〈n|γ5|v〉
(Ev − En)2 −m2

a

cos(mat). (6.9)

Here the formula is presented in the single-particle picture, for simplicity. In
general, a summation over atomic electrons is assumed for each operator; both
the considered operators are single-particle operators, so this summation is triv-
ial.

There are two regimes of interest. The simplest case is when all the relevant
energy intervals are larger than the axion mass, i.e. Ev−En � ma for all states
n. For most of the relevant axion and ALP parameter space, this condition
holds true for most atomic systems. This situation is examined in Sec. 6.3.1.

The other case, though slightly less simple, is potentially more interest-
ing. Here, we consider the case when the system of interest contains a pair
of opposite-parity levels that are near degenerate. Such a situation naturally
arises in polar diatomic molecules (see, e.g., Ref. [108]), and also in some heavy
elements that have a very dense spectrum [12]. In this case, it may be that
Ev − En ∼ ma, though the natural line-widths may play an important role.
This situation is examined in Sec. 6.3.2.

Brief note about the γ5 operator The matrix elements of the γ5 operator
[that appears in Eq. (6.9)] can be simplified using the relation presented in
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Figure 6.1 Parameter-space plot for the coupling of ALPs to electrons as a function of the ALP mass (adapted
from Ref. [268]). The striped blue region is ruled out from observations of the cooling rate of white dwarfs [336];
the hatched green region is ruled out from searches for exotic spin-dependent new forces between electrons [337].
The area below the solid black line represents the possible parameter space for a QCD axion (if ge = 1 the QCD
axion must lie on this line), and the region bounded by the dashed red line is the available space for a QCD
axion assuming it constitutes all of the DM. In general, ALPs may occupy any of the white areas.

Eq. (5.37) (proven in the previous chapter, see page 77)

γ5
ı = i[Ĥ, Σ̂ı · rı] + 2γ5

ı K̂ı,

where Σ̂ = I2σ, with I2 the 2 × 2 identity matrix, and σ is the vector made
from the Pauli spin matrices. The matrix elements of the first term above
scale as 1/c, whereas for the γ5K̂ term they scale as 1/c3. Therefore, in the
nonrelativistic limit, γ5 can be replaced by the commutator i[Ĥ,σı · rı]. The
difficulties associated with an operator that can be expressed in this way are
discussed in Sec. 5.2.3 of the previous chapter.

Here, K̂ = I2k̂, where k̂ is defined in Eq. (5.38). Importantly, the spherical

spinors Ωκ [see Eq. (A.7)] are eigenstates of k̂ with eigenvalues κ [the Dirac
quantum number, κ = (l − j)(2j + 1)]. This means that single-particle states

(orbitals) are eigenstates of the operator γ0k̂ with eigenvalues κ [see Eq. (A.6)].
Therefore, with the use of Eq. (5.15) [page 72], the (single-particle) matrix
elements of the 2γ5K̂ term can be expressed

〈φf |2γ5K̂|φi〉 =
−κi
2me

(εf − εi)〈φf |γ5|φi〉. (6.10)

Combined with the above expressions, this means that for single-particle states
the matrix elements of the γ5 operator can be expressed via the exact (for
single-particle state) expression:

〈φf |γ5|φi〉 =
i∆εfi

1 + κi
2me

∆εfi
〈φf |Σ̂ · r|φi〉, (6.11)

where ∆εfi ≡ εf − εi.
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Table 6.1 Calculations for the amplitudes of the atomic EDM induced via the interaction of axions with
electrons for several single-valence atoms. Values are presented in units of 10−12 ge

a0
fa

(
ma
eV

)2 |e| cm.

Atom State EDM

H 1s 0.118(1)
Li 2s 4.32(7)
Na 3s 4.39(7)
K 4s 7.8(4)
Cu 4s 1.2(2)
Rb 5s 8.8(6)
Ag 5s 1.2(4)
Cs 6s 11(1)
Au 6s 0.9(3)
Fr 7s 9(1)

6.3.1 Typical atomic effects

For atomic systems, typical energy intervals are on the order of ∆E ∼ 103 cm−1 '
1 eV, whereas the mass of the axion is expected to be at most ma ∼ 10−4 eV,
and even as small as 10−10 eV. Therefore, in this case, Ev − En � ma, and
the ma term in the denominator of Eq. (6.9) can be neglected. Taking only the
non-relativistic part of the γ5 matrix element leads to the simple expression

Dv = 2m2
a

a0

fa

∑
n

〈v|d|n〉〈n|σ · r|v〉
Ev − En

cos(mat), (6.12)

which can be calculated with ease. Note in particular, that this expression is
very similar to that for the static dipole polarisability, just as in Eq. (5.48)
(on page 80), which means the accuracy of the calculations can be checked by
scaling and comparing to the experimentally known polarisability values.

In Table 6.1, I present calculations for the size of the effects in several simple
single-valence atomic systems. These accurate atomic calculations agree with
the simple order-of-magnitude estimates presented in Ref. [267], and represent
a significant improvement in the accuracy. Our calculations agree well with
the observation that the atomic structure factor scales with the static dipole
polarisability. The largest presented amplitude is for the 6s ground-state of
cesium, which is not surprising, because this system has the largest ground-
state polarisability of any atom [293]. Assuming ma ' 10−4 eV, and a0/fa '
4× 10−19 (i.e. assuming a QCD axion), the induced EDM in Cs is on the order
of 10−38 e cm, which is 14 orders of magnitude smaller than the best limit on the
EDM of a paramagnetic atom (Tl) [150], and 15 orders of magnitude smaller
than the limit on the EDM of Cs [149]. We note, however, that the parameter
space for axion-like particles is very broad, and spans many orders of magnitude.
Using this effect in paramagnetic atoms, it may be possible to probe regions of
the ALP parameter space, but it is unlikely to be possible to probe the QCD
axion.

While EDM effects are typically much larger in paramagnetic systems, the
measurements are typically much more precise in diamagnetics. The most pre-
cise limit on an atomic EDM was set using 199Hg [147]. Simple estimates put
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Figure 6.2 Potentially accessible region of the parameter-space for the coupling of ALPs to electrons from the
axion-induced atomic EDM as a function of the ALP mass. The solid magenta region represents the parameters
assuming the dynamic EDM search can be performed at the same level of sensitivity as the best atomic EDM
search (set using Hg [147]). The hatched magenta region would be the accessible parameter space assuming an
optimistic three orders-of-magnitude improvement over the current best limits. (See Fig. 6.1 for a description
of the other regions.)

the axion-induced EDM of ground state of Hg at about 0.9, in the same units
as those in Table 6.1, leading to an effect with the same assumptions as above
on the order of 10−40 e cm, which is 12 orders of magnitude smaller than the
limit on the Hg EDM.

In Fig. 6.2, I present the same parameter-space plot as that presented in
Fig. 6.1, with two extra regions added. The first region (the solid magenta
block) represents the potentially accessible region of the parameter space as-
suming a dynamic atomic EDM experiment using Cs (a paramagnetic atom)
could reach the same level of sensitivity as the current most sensitive static
EDM experiment, which was performed for the diamagnetic Hg atom [147]. We
remind that one dominant source of uncertainty in atomic EDM experiments
comes from the electric field reversals, which are not required in searches for
dynamic EDMs. The other region (hatched magenta block) represents the po-
tential set of parameters assuming that the dynamic Cs EDM could be probed
at a level of sensitivity a few orders of magnitude better than the current best
limits. Even with these especially optimistic assumptions, the axion-induced
EDMs in alkali (group 1) atoms are likely too small to be competitive with
other axion searches.

It is therefore unlikely that the EDM induced in atoms via the axion–electron
interaction could be measured in the near future. This is not the end of the
story, however. The axion-induced EDM via the same interaction in certain
systems may be enhanced by many orders of magnitude.

One particular example of such an enhancement occurs in Rydberg atoms.
Rydberg atoms, which are atoms that are in a very highly-excited state, are
known to have a hugely enhanced polarizability. As shown above, the axion-
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induced oscillating EDMs in atoms are proportional to the atomic dipole po-
larizability; in this case, since the field is oscillating, it is proportional to the
dynamic polarizability [338].

6.3.2 Resonant enhancement in atomic dysprosium and xenon

It may also possible to gain a further enhancement in the sensitivity of the EDM
measurements by tuning the experiment to a specific frequency in order to bring
about a resonance with (Ev−En)2 ' m2

a, see Eq. (6.9). Similar techniques have
already been shown to work using the practically degenerate A and B states
in Dy [89], and could potentially be implemented in systems such as barium,
radium, thorium, and singly-ionised actinium, which also possess pairs of very
close levels of opposite-parity, as discussed in Sec. 3.4 of this thesis. It was
suggested in Ref. [286] to that searching for oscillating EDMs in cold molecules
could be used to probe axion and ALP DM. The effects considered in that
work were due to the axion–nucleus interaction, which produces a nuclear Schiff
moment. Here, I consider the axion–electron interaction and consider the effects
in atoms, such as Dy, in which the close pairs of opposite parity levels have the
same total angular momentum and can be mixed.

In this regime it is allowed that ∆E ∼ ma, and the expression for the EDM
induced in state A, which is enhanced by the nearby state of opposite parity,
B, is given by

DA = 2m2
a

a0

fa

〈A|d|B〉〈B|σ · r|A〉
(EA − EB + iΓA/2)2 −m2

a

(EB − EA) cos(mat). (6.13)

Since this EDM will be practically entirely due to the contribution from the
mixing of the two nearby states, only one term from the usual summation needs
to be considered.

In these systems it is possible to tune the already close levels into resonance
using the Zeeman effect with modest magnetic fields. Such a procedure has
been demonstrated to work in Dy, see, e.g., Refs.[239, 333, 339, 340]. Here,
we consider such an effect on resonance, where a particular set of opposite-
parity levels (denoted A and B) are brought into resonance with the axion mass
EA − EN ≈ ma; for simplicity, we also consider only the case where ma � Γ,
which is a reasonable assumption for Dy and Xe. In this case, the EDM induced
in the state A is given

DA ≈ −DB ≈ 〈A|d|B〉〈B|σ · r|A〉a0

fa
ma cos(mat). (6.14)

In deriving this equation, we have assumed that the width of the state A is
much greater than that of B, and that that ALP mass is much larger than the
widths: ma � ΓA � ΓB . Note that, contrary to the simple atomic case, this
EDM scales (directly) as ma, not m2

a (though for DM we also have, a0 ∼ 1/ma).
The feature of Dy that makes it a particularly interesting system for the

study of atomic PNC is the existence of two nearly degenerate states of opposite
parity and the same total angular momentum, J = 10, at E = 19797.96 cm−1.
We use the notation A for the even-parity state and notation B for the odd-
parity state, following Ref. [89]. Unfortunately, the enhancement in the signal
is not as strong as one might have expected. This is due to two factors. Firstly,
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Figure 6.3 Potentially accessible region of the parameter-space for the coupling of ALPs to electrons from
the axion-induced EDM in atomic Xe as a function of the ALP mass. The solid grey region represents the
parameters assuming the dynamic EDM search can be performed at the same level of sensitivity as the best
atomic EDM search. The hatched grey region would be the accessible parameter space assuming an optimistic
three orders-of-magnitude improvement over the current best limits.

the small factor that appears in the denominator from the closeness of the levels
is compensated by the small parameter ∆E in the numerator [see Eq. (5.37)],
which in this case, does not cancel. Also, specifically for Dy, the relevant electric
dipole matrix elements are particularly small in Dy [91]. This is because the
A and B states have different spin, meaning the matrix element is zero in the
non-relativistic limit.

It may be much more fruitful to examine the effects in other atomic sys-
tems that also posses near-degenerate opposite parity levels, such as Xe [341],
however the calculations are rather complicated due to the large number of elec-
trons involved; a full analysis is beyond the scope of this thesis. The levels of
interest in Xe are the J = 2 levels at E = 94759.9 cm−1 [188]. In Ref. [341],
calculations were performed for Xe, with the intention of motivating a parity-
violation experiment. Taking calculations of the relevant radial integrals from
that work, it is possible to extract order-of-magnitude estimates on the size of
the axion-induced EDM for Xe. Unlike in the Dy case, the relevant radial inte-
gral is not highly suppressed, which leads to a much larger effect. The resulting
parameter-space plot is shown in Fig. 6.3.

It may also be possible to use a molecular interferometry experiment (such
as that proposed in Ref. [286]), which would allow a build up of phase over
several oscillations through an optical cavity on resonance. This may allow an
improvement in the sensitivity of several orders of magnitude [286].
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6.4 Axion–nucleon interactions

6.4.1 Nuclear Schiff and magnetic quadrupole moments

The QCD axion was previously shown to give rise to oscillating P - and T -odd
nuclear Schiff moments [267, 268, 286], which arise from P - and T -odd intranu-
clear forces and from the EDMs of constituent nucleons. This follows from the
observation that the QCD Lagrangian contains the P - and CP -violating term

LθQCD = θ
g2

32π2
Gµνa G̃aµν , (6.15)

and that θ may be cast in the form θ(t) = a(t)/fa. Here, a(t) = a0 cos(mat)
is the oscillating QCD axion field with fa the axion decay constant, θ is the
dimensionless parameter that quantifies the degree of CP -violation, Ga and G̃a
are the gluonic field tensor and its dual, respectively, (with color index a) and
g is the QCD gauge coupling constant.

Though an EDM of the nucleus is completely unobservable in neutral sys-
tems, the EDMs of individual nucleons, whether static or oscillating, contribute
to the so-called nuclear Schiff moment [107, 342] (see also Ref. [139] where the
contribution of the proton EDM was considered). The interaction of the atomic
electrons with the nuclear Schiff moment leads to mixing of atomic and molec-
ular states of opposite parity, which in turn leads to the creation of EDMs. The
relation between the individual nucleon EDMs and the Schiff moment depends
on the nuclear structure. It can be roughly estimated as S ∼ r2

NdN , where rN
is the nuclear radius and dN is the nucleon EDM, though large enhancements
are found in systems that posses octopole deformation. The relation between
the Schiff moment and the induced atomic or molecular EDM depends on the
electronic structure.

Such moments can arise due to the axion coupling to gluons inside the
nucleus, producing an effective oscillating θQCD term in the Lagrangian. In
Ref. [286], Graham and Rajendran demonstrated that the axion–gluon coupling
in Eq. (6.2) would induce an oscillating EDM in nucleons of dn ' 1.2×10−16 a

fa
e·

cm. (The expression for the nucleon EDM induced by the regular θQCD term
was derived in Ref. [343]; see also [344]). Assuming that axions saturate the DM
density of the galaxy, and using the estimates for the axion couplings discussed
above, this leads to an oscillating EDM of [286]

dn ≈ 4× 10−35 cos(mat) e cm. (6.16)

Also produced is a Schiff moment on the order of S ∼ 10−9Z3dn [107], meaning
that it is preferable to use heavy systems (note that although the EDM of the
nucleons do contribute to the nuclear Schiff and magnetic quadrupole moments,
the dominant contribution actually comes from the axion perturbation to the
pion exchange inside the nucleus [267]; the parametrisation of the induced Schiff
moment in terms of the nucleon EDM is purely for convenience). For Hg and
Tl, this evaluates to around three orders of magnitude further suppression.
However, nuclei that posses octopole deformation gain a significant enhancement
in the Schiff moment. For example, the Schiff moment of 225Ra is more than two
orders of magnitude larger than that of Hg [221, 222]. For heavier actinides such
as 229Pa, the enhancement means that the Schiff moment is actually enhanced
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compared to the bare nucleon EDM, S(229Pa) ∼ 10 dn [222, 286]. In Ref. [295] a
thorough experimental proposal was put forward to search for axions and ALPs
by detecting such a Schiff moment in solid state systems.

Here, we note that as well as nuclear Schiff moments, the axion–gluon cou-
pling (6.2) also produces a nuclear magnetic quadrupole moment via the effective
oscillating θQCD. The magnetic quadrupole moment is the lowest order P - and
T -violating magnetic moment of the nucleus. As in the case of the Schiff mo-
ment, the magnetic quadrupole moment leads to the production of atomic and
molecular EDMs by mixing electronic states of opposite parity. In Ref. [107] it
was shown that the nuclear magnetic quadrupole moment creates larger EDMs
in paramagnetic atoms and molecules than the Schiff moment. Also, in con-
trast to the Schiff moment, ordinary quadrupole deformation—which exists in
50% of nuclei, and in all nuclei of experimental interest—is sufficient to allow
a significant enhancement (octopole deformation is required to enhance Schiff
moments).

Here we point out that, as well as Schiff moments, axions may also induce
oscillating P - and T -odd effects in molecules through the generation of oscil-
lating nuclear magnetic quadrupole moments (MQMs), which arise from P -
and T -odd intranuclear forces and from the EDMs of constituent nucleons. We
note that nuclear MQMs, unlike nuclear EDMs, are not screened by the atomic
electrons. Both of these mechanisms contribute to nuclear MQMs, which are
linear in θ, and so recasting θ in the form θ(t) = a(t)/fa leads to our noted
inference. The approximate magnitudes of such oscillating nuclear MQMs and
the effects they induce in molecules can be obtained for various cases from the
numerical values in Ref. [345] (see also Refs. [107, 122, 224]) by the substitution
θ → a0 cos(mat)/fa, with a0/fa ∼ 4×10−18 from consideration of the local DM
density, see, e.g., Ref. [267, 268, 286, 319, 346, 347].

6.4.2 Diatomic molecules

The Schiff moment can then produce an atomic or molecular EDM by inducing
a mixing of opposite parity states. In paramagnetic systems, this EDM can be
further enhanced, particularly in the diatomic molecules which posses Λ or Ω
doubling—resulting in very closely spaced rotational levels of opposite parity.
Note that the application of a modest external electric field (∼ 102 kV cm−1) will
lead to a maximally polarised molecular state. In this regime, the energy shift
caused by the molecular EDM is actually independent of the applied electric
field strength (since it is due to the internal effective electric field).

In Ref. [345], the authors used the relations between QCD and the nuclear
P - and T -odd forces derived in Ref. [344] to show that the magnetic quadrupole
moment of a valence neutron or proton is

Mn ≈Mp ≈ 2× 10−29 θQCD e cm2. (6.17)

The moment of the nucleus depends on the nuclear structure, and can be quan-
tified by the “collective enhancement” parameter, η: M(N) = ηNMn. Here, N
denotes the nucleus in question.

In much the same way as for the nucleon EDMs, the interaction of the axion
field with gluons inside the nucleus would also give rise to oscillating nuclear
magnetic quadrupole moments, with a magnitude given by ηMn/p, with the
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Table 6.2 Nuclear spins I, molecular ground states, the enhancement factor η (for the heavy nucleus), calcu-
lations of the molecular structure WM (from the literature), and the resulting energy shift factor WMMΩ for
several paramagnetic diatomic molecules of experimental interest.

System |WM | |WMMΩ|
Molecule I State ηa 1033 Hz

e cm2 1010 a0
fa
µHz

135,7BaF 3/2 2Σ1/2 −1.2 0.83b 1
173YbF 5/2 2Σ1/2 −20 2.1c 42
201HgF 3/2 2Σ1/2 2 4.8b 10
181TaN 7/2 3∆1 −25 1.1d 50
229ThO 5/2 3∆1 −19 1.9e 72

a Ref. [345]
b Ref. [122]
c Ref. [348]
d Ref. [349]
e Ref. [350]

substitution θQCD → a0 cos(mat)/fa in Eq. (6.17). This leads to energy shifts
due to the axion field of

δE ' CJFMWMΩ cos(mat), (6.18)

where CJF are angular coefficients of order ∼ 0.1, Ω is the projection of the
total electronic angular momentum onto the molecular axis, and the parameter
WM is found from molecular structure calculations (which we take from the
literature):

WM =
3

2Ω
〈0|
∑
i

(
αi × ri
r5
i

)
· r|0〉. (6.19)

The values of the parameters η, MW , and MWMΩ for several paramagnetic
diatomic molecules of experimental interest are given in Table 6.2.

For example, the energy shift in 229ThO for the values J = 1 and F = 5/2
where the angular coefficient reaches its maximal value |CJF | = 0.16 and taking
a0/fa ' 4× 10−18 as above, is

δE(229ThO) ' 2.1× 10−28 eV cos(mat). (6.20)

More generally, the energy shift is given

δE(229ThO) ' 1.0× 10−21
(ma

eV

)−1
(
gN/fa

GeV−1

)
eV cos(mat). (6.21)

In Ref. [286], it was considered to search for the induced nuclear Schiff mo-
ment in cold molecules, using a molecular interferometry experiment (see also
Ref. [159]). The authors reasoned that using such techniques, it may be possible
to detect energy shifts as small as 10−25 eV. In Fig. 6.4, I plot the potentially
accessible parameter space assuming that a search can be performed at this
level of sensitivity. I also plot the potentially more realistic region, assuming
the sensitivity is around six orders of magnitude worse. This demonstrates
that such a search can potentially be competitive with existing searches. The
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Figure 6.4 Potentially accessible region of the parameter-space for the coupling of ALPs to nucleons from
the axion-induced nuclear magnetic quadrupole moment in diatomic polar molecules as a function of the ALP
mass. The striped blue region is excluded from cooling rates in supernova 1978A (see, e.g., Ref. [268]). The
densely hatched green region represents the accessible parameters assuming the dynamic EDM search can be
performed at the δE ∼ 10 × 10−19 eV level; the more sparsely hatched green region would be the accessible
parameter space assuming the optimistic case that the search can be sensitive to the δE ∼ 10× 10−25 eV level,
as in Ref. [286].

large effects of the MQM, compared to the Schiff moment, mean that in cer-
tain systems a significant enhancement can be found. Searches based on both
nuclear Schiff and magnetic quadrupole moments could be complimentary, and
may help to constrain systematic effects, which can be different in the different
materials. Note that the analysis performed here is only a simple one, using
order-of-magnitude estimates. A more detailed exploration concerning the par-
ticulars of the experimental techniques must be performed, though is beyond
the scope of this thesis. Such an analysis will be saved for a future work.

6.4.3 Paramagnetic solids

In Ref. [295], a thorough experimental proposal was put forward to use the
axion-induced nuclear Schiff moments that are produced in solid-states diamag-
netic systems (see also Refs. [268, 286]) – the so-called CAPSEr experiment
(cosmic axion spin precession experiment). Experimental work is currently un-
der way at Mainz, in Germany. The authors plan to use highly precise mag-
netometry to detect the transverse magnetisation on resonance. The resonance
condition is found by using magnetic fields to tune the Larmor frequency of
the nuclear spins into resonance with the frequency of the axion field, ma. By
slowly scanning over values for the magnetic field, a resonance can be sought
over a wide range of frequencies (i.e. a wide range of potential values for the
axion mass). The induced signal can be expressed [295]:

M ≈ npµ(EDA)
sin[(2µBext −ma)t]

(2µBext −ma)
sin(2µBextt), (6.22)
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where n is the number density of nuclear spins, p is the polarisation fraction, µ
is the magnetic dipole moment of the nucleus in question, Bext is the applied
magnetic field, and EDA is the size of the energy shift, due to the atomic electric
dipole moment (which is caused by the axion-induced nuclear Schiff moment).

Here, we note, that such effects can also be sought for using paramagnetic
systems, in which the effect is mainly due to the axion-induced nuclear MQM
(instead of the Schiff moment). The use of paramagnetic systems and the as-
sociated MQMs has several advantages, but also several disadvantages. The
EDM produced in paramagnetic systems due to the MQM can be several orders
of magnitude larger than those produced by the Schiff moment. In particular,
nuclei that posses quadrupole deformation have a huge collective enhancement
in the size of the MQM; most nuclei (and all of experimental interest) posses
quadrupole deformation. In order to gain the collective enhancement of the
Schiff moment, nuclear octopole deformation is required. Roughly, this should
lead to around three or four orders of magnitude enhancement in the signal,
depending on the system. Also to their advantage, is that in paramagnetic
systems, the Larmor frequency is set by the electronic spin. So, the magnetic
moment µ that appears in Eq. (6.22) becomes the electron magnetic moment (as
opposed to the nuclear magnetic moment), which is three orders of magnitude
larger.

The six orders of magnitude enhancement discussed above is, however, com-
pensated by about a six orders of magnitude suppression, which is due to the
fact that the total sensitivity is also proportional to the spin-coherence time (the
spins must be polarised to gain a coherent signal). The diamagnetic systems
considered in Ref. [295] have spin coherence times of around one million times
larger than those in paramagnetic systems (depending on the specific materials).

So, overall, it may appear that there is no main advantage or disadvantage.
However, the difference in the magnetic moments leads to another difference
between the diamagnetic and paramagnetic experiments. The larger magnetic
moment of the paramagnetic systems means that significantly higher frequencies
(i.e. larger axion masses) can potentially be reached with the same magnetic
fields. This means that, even if the overall sensitivity is substantially lower, ex-
periments using paramagnetic systems can potentially probe a different region of
the axion mass parameter space than the diamagnetic experiments. Therefore,
such experiments would be complementary to each other and could be run in
parallel. A full analysis of the size of the induced effects, including calculations
for specific systems, is beyond the scope of this thesis and will be presented in
a later work.

6.5 Axion electromagnetic anomaly

Recently, it was put forward in Ref. [351] that any particle with a static mag-
netic dipole moment would gain an induced oscillating EDM due to the axion
electromagnetic anomaly. The author considered the tree-level perturbative
correction to the electron magnetic dipole operator due to the axion anomaly,
shown diagrammatically in Fig. 6.5, and concludes that such a moment may
be detectable in molecules. The magnitude of the EDM derived in Ref. [351] is
∼ 10−32 e cm, very large compared to the typical axion-induced EDMs (see, e.g.,
[252, 267, 286]), and only a few orders of magnitude smaller than the current
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Figure 6.5 First-order Feynman diagram for the oscillating P - and T -odd EDM field induced from the inter-
action of an axion with an electron [351]. The solid line is an electron, the internal and external wavy lines are
the virtual (exchanged) and real photons, respectively, and the dashed line is the axion.

limit on the (static) electron EDM [146]. Note that this result has since been
called into question [352].

Such an effect (if correct) would require a frequency (ω = ma) and phase
matched oscillating electric field in order to detect the EDM-like linear Stark
shifts [351]. Such an effect relies on the frequency and phase of the applied field
to be in resonance with the axion field in order to be detectable, which poses
distinct problems from an experimental standpoint (due at least partly to the
fact that neither of these quantities are known; see also Ref. [352].

We consider whether such an effect may be observable instead with an ap-
plied static electric field. That is, we consider the diagram as in Fig. 6.5, except
with the external photon line replaced with a transverse line corresponding to
the interaction with a static external electric field. Note that in Ref. [351], the
author considers the photon-electron vertex as the effective anomalous magnetic
interaction. For a more general treatment, we consider the vertex structure
Γµ = γµ + 1

2me
σµνq

ν , which contains the normal vector current as well as the
effective anomalous current. A direct evaluation leads to the amplitude

ie
gγa0

fa
sin(mat)

1

q2
εαβνµp

αqνεβ ū(k)Γµu(k′), (6.23)

where k′ = k− q, and ε is the polarization vector of the external photon. Here,
we have assumed that the axion is nonrelativistic, i.e. pµ ≈ (ma,0), meaning
the index α = 0. However, note that for a static field we are free to choose the
gauge where εµ = (ε0,0). Clearly, in this gauge (and thus in every gauge), such
a treatment in fact does not lead to observable effects [352].

Instead, we consider the observable effect due to the Coulomb interaction
between the nucleus and the electrons perturbed by the interaction of the ax-
ion field with the exchanged photon. The interaction mediated by the direct
exchange of an axion between two fermions was considered in Ref. [308]. Eval-
uating the Feynman diagram for this process (presented in Fig. 6.6) leads to an
effective single-electron interaction Hamiltonian

ĥint =
α

2

gγa0

fa
ma sin(mat) (αp × n) ·αe, (6.24)

where the operator αe(p) = γ0γ acts on the electron (proton) wave functions
and n is the unit vector pointing from the nucleus to the electron. In arriving at
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Figure 6.6 First-order Feynman diagram for the oscillating P - and T -odd interaction between an electron and
the nucleus induced by the axion field. The fermion line denotes an atomic or molecular electron, the double line
denotes the nucleus (sum of protons), the dashed line is the axion, and the wavy line is the exchanged photon.
Note there are also diagrams with both fermions being electrons, and with both fermions being nucleons.

this formula we have assumed the axion to be nonrelativistic, i.e. pµ ≈ (ma,0),
and have taken the limit of zero nuclear recoil, qµ ≈ (0, q). Note that the α
matrices each introduce a small factor (1/c in regular units); a suppression
that makes this effect at least four orders of magnitude smaller than the other
relevant effects considered in this thesis, so we consider it no further.
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CHAPTER 7:
Direct Detection of

Electron-Interacting WIMPs:
accurate atomic calculations and implications for the

dama, xenon and CoGeNT annual modulation signals

A very promising claim of a positive direct detection of WIMPs was made
by the DAMA Collaboration. Their result is currently the only long-
standing claim for a positive dark matter detection. However, null re-
sults from many other experiments all but rule out the possibility that the
DAMA result is due to a WIMP–nucleus interaction. The DAMA exper-
iment is sensitive to scattering off both electrons and nuclei. Most other
DM detection experiments, however, reject pure electron events, meaning
that DM particles that interact favourably with electrons could potentially
explain the DAMA modulation without being ruled out by the other null
results. Newer hints on annual modulations from both the CoGeNT and
XENON experiments (which are also sentive to electron recoils) makes
this idea particularly exciting. In this chapter, I employ the relativistic
Hartree-Fock method to calculate model-independent cross sections and
event rates for the atomic ionisation induced by the interaction with dark
matter for several atoms of experimental interest. This is the first time
relativistic effects have been taken into account. Moreover, I demonstrate
here that relativistic effects are crucial, dominating the amplitude. By
assuming the DAMA modulation is a positive detection, I calculate the
event rates that would be expected in the XENON and CoGeNT detectors.
The CoGeNT results are more-or-less consistent with DAMA, however,
the XENON results are not. From this we are able to set extremely tight
constraints, and completely rule out electron-interacting WIMPs as the
source of the DAMA modulation.

7.1 Introduction

The astronomical evidence for the existence of dark matter (DM) is overwhelm-
ing. Despite this, no definitive observation of DM has yet been confirmed, and
its composition remains one of the most important outstanding problems facing
physics today.

One intriguing potential detection was made by the DAMA Collaboration,
which uses a NaI-based scintillation detector to search for possible DM interac-
tions within the crystal in the underground laboratory at the Gran Sasso Na-
tional Laboratory, INFN, Italy [356] (see also Ref. [357] and references therein).
The data from the combined DAMA/LIBRA and DAMA/NaI experiments indi-
cates an annual modulation in the event rate at around 3 keV electron-equivalent
energy deposition with a 9.3σ significance (the low-energy threshold for DAMA
is ∼ 2 keV) [356, 358, 359]. The phase of this modulation agrees very well with
the assumption that the signal is due to the scattering of DM particles (e.g.,
WIMPs) present in the DM galactic halo. The annual modulation is one of the
key expected observables for WIMP dark matter detection and is expected due
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to the motion of the earth around the sun which results in an annual variation
of the dark matter flux through a detector, see, e.g., Refs. [360, 361]. This result
stands as the only enduring DM direct-detection claim to date.

However, null results from several other sources such as, for example, the
XENON100 [362], LUX [363, 364], and SuperCDMS [365] experiments, all but
rule out the possibility that the DAMA signal is due to a WIMP–nucleus inter-
action (see also Refs. [360, 366, 367]). While the DAMA experiment is sensitive
to scattering of DM particles off both electrons and nuclei, most other DM de-
tection experiments reject pure electron events in order to search for nuclear
recoils with as little background as possible. This means that DM particles that
interact favourably with electrons rather than nucleons could potentially explain
the DAMA modulation without being ruled out by the other null results (see,
e.g., Refs. [367, 368]). This possibility has been investigated previously in the
literature—see, e.g., Refs. [361, 369–373]. It has also been noted [374] that such
leptonically interacting DM models could explain the anomalous cosmic ray de-
tections measured by, for example, the AMS [375], ATIC [376], Fermi [377], and
PAMELA [378, 379] experiments (see also Refs. [380–382]).

In Ref. [370], the authors employ a general effective field theory approach to
write down effective interactions between DM particles and electrons, assum-
ing that the DM has interactions only with leptons at tree-level. They show,
however, that due to a suppression in the WIMP–electron-scattering ionisation
cross section, loop-induced WIMP–nucleus scattering would dominate the rel-
evant event-rate if an interaction with nucleons can be generated at the one-
or two-loop level, even if the DM particles only interacted with leptons at tree
level. In this case, the previous constraints from nuclear recoil experiments
[362, 363, 365] still apply (except in the case of an pseudovector electron coul-
ing, in which the loop corrections do not arise). However, these conclusions are
based on calculations that employed simple nonrelativistic wave functions. A
rigorous ab initio relativistic treatment of the atomic structure has not yet been
implemented. As is demonstrated in this thesis, a proper relativistic treatment
is in fact crucial.

A recent analysis of data from the XENON100 experiment has also investi-
gated WIMP-induced electron-recoil events [383, 384]. These experiments have
also observed modest evidence for an annual modulation (at the 2.8σ level).
However, based on their analysis of the average unmodulated event-rate, DM
that interacts with electrons via an pseudovector coupling was excluded as an
explanation for the DAMA result at the 4.4σ level [383]. This means that for
DM–electron scattering to be consistent with both the DAMA and XENON ex-
periments, the event rate would have to have a very large modulation fraction.
It has been suggested that electron-interacting “mirror” DM may satisfy this
criteria [385] (see also Ref. [373]). By assuming the DAMA result was due to an
pseudovector coupling, and using the theoretical analysis from Ref. [370], the
corresponding modulation amplitude that would be expected in the XENON
experiment was calculated in Ref. [384]. The observed amplitude was smaller
than this by a factor of a few, and it was concluded that the XENON results
were inconsistent with the DAMA results at the 4.8σ level [384]. We note,
however, these conclusions are not entirely model independent, and a rigorous
relativistic analysis is required. We also note that there is no a priori reason
to believe that the fraction of the modulated signal should be small or propor-
tional to the fractional annual change in the DM velocity distribution. In fact,
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the scattering amplitude is very highly dependent on the values of momentum
transfer involved, which depend on the velocity of the DM particles. As we
shall show, electron relativistic effects must be taken into account properly to
recover the correct momentum-transfer dependence of the cross section, which
is a significant point.

The recent work in Ref. [353] demonstrated that the ionisation cross section
due to a WIMP–electron interaction is actually dominated by relativistic effects.
This is due to the non-analytic cusp-like behaviour of the Coulomb-like wave
functions at very small radial distances, and the slight difference in the radial
dependence of the Dirac wave functions (compared to the Schrödinger wave
functions). The implication is that the suppression from the electron matrix el-
ements may not be as strong as previously assumed, meaning the nonrelativistic
calculations may significantly underestimate the cross section.

Furthermore, as several new experiments designed to test the DAMA results
are currently under way [357, 386–390], it is crucial that the relevant theory
required for their interpretation is correct, and as free of model dependencies as
possible.

In this paper, we employ the relativistic Hartree-Fock method to calculate
model-independent cross-sections and event rates for the atomic and molecular
ionisation induced by the interaction of atomic electrons with dark matter for
several systems of experimental interest. Atomic ionisation has been considered
previously for the case of axions [261, 262, 391]. By performing the atomic
structure calculations in an ab initio manner including all relativistic effects we
are able to keep the discussion as model independent as possible. Also, our
method allows the inclusion of all relativistic effects for the electron wavefunc-
tions, which we show is important, but was neglected in previous analyses. Most
current analysis parametrises the DM–electron scattering in terms of the “free
electron” cross section. We, however, parametrise the interaction in terms of the
mass of the DM particle, the mass of the mediating exchange particle, and the
effective DM–electron coupling constant. This is a more useful parametrisation
that more easily allows comparison with specific DM models.

In Sec. 7.2, I derive the scattering cross sections and other relevant quanti-
ties, and discuss how the approach taken in this paper differs from the previous
investigations into this matter. In Sec. 7.3, I demonstrate the importance of
relativistic effects, and note that a non-relativistic analysis (such as those per-
formed previously) may significantly underestimate the size of the effects. In
Sec. 7.4, I outline the techniques utilised for the accurate relativistic atomic
calculations, and go on in Sec. 7.5 to present my results and to discuss the
implications of these for the interpretation of the DAMA annual modulation in
terms of DM interactions with atomic electrons. Finally, in Sec. 7.6 I present
the summary and conclusions.

7.2 Theory

7.2.1 Scattering cross-section and event rate

We consider the case in which the scattering of an incident DM particle from
the galactic halo off the atomic electrons leads to the ionisation of the atom or
molecule. This situation is shown diagrammatically in Fig. 7.1.
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Figure 7.1 Example diagram for interaction of a dark matter particle (χ), with an electron via the exchange
of mediator φ. Double electron line denotes a bound atomic electron (E < 0), and the single electron line
denotes a continuum state electron with energy ε > 0.

First, we assume the well-motivated case that the DM particle interacts
with electrons via the exchange of a heavy vector-boson mediator. We initially
model this interaction as a simple four-fermion vertex described by an effective
Yukawa-type potential,

ĥint = αχ
e−mvr

r
, (7.1)

and use the Born approximation to write down the cross section [353]. In
the limit that mv → 0, the interaction (7.1) corresponds to a Coulomb-like
interaction, and in the opposite limit (mv → ∞) it corresponds to a purely
contact (delta-function–type) interaction. Treating the DM nonrelativistically,
the partial differential cross section corresponding to the ejection of a bound
electron initially in the state a to a state in the continuum is given by

dσa =
8πα2

χ

v2
χ

∫ q+

q−

q dq

(q2 +m2
vc

2)2

∣∣〈ε|eiq·r|a〉∣∣2 p2 dp dΩp
(2π)3

, (7.2)

where q± = k ±
√
k2 − 2mχ∆E, |ε〉 is an atomic state in the continuum with

energy ε ' p2/2me, the state |a〉 is a bound atomic state, and Ωp denotes the
momentum-space angular variables for the outgoing electron. The total energy
deposition, ∆E ≡ ε−Ea, is related to the change in energy of the DM particle
and to the energy of the ejected electron:

∆E =
k2 − k′2

2mχ
= Ia + ε, (7.3)

where Ia is the ionisation potential for the state |a〉.
The event rate is proportional to the function σvχ, which must be averaged

over the distribution for the DM particle velocity vχ:

〈σvχ〉 =

∫ ∞
0

fχ(v)σ v dv (7.4)

(note that the cross section σ itself depends strongly on vχ, since this sets the
incident energy of the DM particles). We take the velocity distribution to be
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Figure 7.2 Normalised distributions for the DM velocity in the earth frame [see Eq. (7.5)]. The solid black
line (avg) corresponds to the DM velocity distribution in the solar frame, and the dotted blue (min) and dashed
magenta (max) lines refer to the distributions in the earth frame around December 2 and June 2, respectively.

pseudo-Maxwellian (see, e.g., Ref. [360]):

fχ(v) ∝ v2

∫ 1

−1

exp

[
−3(v + ve)

2

2v2
rms

]
d(cos γ) Θ, (7.5)

where, vrms is the root-mean-square (rms) velocity of the DM particles in the
galactic frame, γ is the angle between v and ve, and ve is the velocity of the
earth in the galactic frame:

v2
e ' v2

� + v2
⊕ + 2v�v⊕ cosβ cos(ωt), (7.6)

where v� is the speed of the sun in the galactic frame, v⊕ is the orbital speed of
the earth in the solar frame, and β ≈ 60◦ is the inclination of the earth’s orbit
relative to the galactic plane. Time t = 0 is when the velocities of the earth and
sun add maximally in the galactic frame (corresponding to around June 2), and
ω = 2π

T with T ∼ 1 yr. The Heaviside-theta function Θ acts as the appropriate
escape velocity (vesc) cut-off (the maximum allowed velocity of the DM particles
in the galactic frame). The proportionality constant is determined from the
normalization condition:

∫∞
0
fχ(v) dv = 1. We take vrms = 0.73 × 10−3 c,

v� = 0.77 × 10−3 c, vesc = 2.2 × 10−3 c, and v⊕ = 0.10 × 10−3 c [360]. The
particular distributions of interest are shown in Fig. 7.2. We note, however,
that the above Maxwell distribution (7.5) is not the only candidate; in fact
non-Maxwellian distributions are well-motivated, and, in certain circumstances,
may have a significant impact on the modulation rate [392] (see also Ref. [393]
and references therein).

In the experiment, neither ε or Ia are measured individually; instead it is the
combination ∆E (7.3) that is important. The number of “single-hit” events in
certain energy intervals (2–4 keV, 2–5 keV, and 2–6 keV) are recorded; only the
single-hit rate is recorded, since the likelihood that a double-hit event would
be caused by a dark matter interaction is vanishingly small. Therefore, the
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quantity of interest is

〈dσ vχ〉 =
4α2

χ

π

∫ ∞
0

dv
fχ(v)

v

∫ q+

q−

dq
q

(q2 +m2
vc

2)2

×
∑
n,κ

me

√
2me(∆E − Inκ)Knκ d(∆E), (7.7)

where κ = (l− j)(2j+1) is the Dirac quantum number1 with l and j the orbital
and total (single-electron) angular momentum quantum numbers, respectively,
and the “atomic kernel” is defined

Knκ(∆E, q) =
∑
κ′

∑
m,m′

∣∣〈εκ′m′| eiq·r|nκm〉∣∣2 . (7.8)

Here, m is the projection of j onto the axis of quantization.
Then, the differential event rate per unit energy per kilogram, is given by

Rmχ,mv,αχ(∆E) =
nρχ
mχ

〈dσ vχ〉
d(∆E)

, (7.9)

where ρ ≈ 0.4 GeV cm−3 is the assumed local DM energy density, and n is the
number of target atoms per kilogram. The total average event rate per kilogram
in the energy interval ∆E ∈ [a, b] is given by

Ra→b =
1

∆Eb −∆Ea

nρχ
mχ

∫ b

a

〈dσ vχ〉, (7.10)

which is expressed in units of counts per day (cpd) per kg/keV.

7.3 Importance of electron relativistic effects

7.3.1 Exponential suppression (and lack thereof)

The large magnitude of the momentum transfer q relative to the typical electron
momenta means that the exponent in the atomic structure factor 〈f | e−iq·r|i〉 os-
cillates much more rapidly than the electron wave functions involved. The value
of this integral is thus determined by small electron–nucleus separations, and
the dominant contribution to the cross section is proportional to the probability
of finding the electron close to the nucleus.

In general, rapid oscillations of e−iq·r lead to an exponential suppression of
the amplitude. The simplest way to see this is by assuming that the electron
wave functions have an oscillator-like behaviour, ψi,f (r) ∼ A e−βr

2

. The matrix
element for large q will then be

〈f | e−iq·r|i〉 ∝ e−q
2/8β , (7.11)

which is exponentially suppressed. This behaviour will be observed for any
electron wave functions that are smooth near the origin. As mentioned above,
exponential suppression of the amplitude for large ve/V is also the general result
of the adiabatic nature of the perturbation by a slow projectile [394, 395].

1 κ = −1 for s1/2, κ = 1 for p1/2, κ = −2 for p3/2, etc.
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We demonstrate, however, that the behaviour of the electron wave functions
near the origin of the Coulomb field leads to contributions to the amplitude that
are not exponentially suppressed. These terms are proportional to the nuclear
charge Z and decrease only as a power of q at large q.

Consider the ejection of an electron with energy ε from an atomic orbital
nl. The contribution of the final-electron partial wave l′ to the amplitude
〈εl′| e−iq·r|nl〉 is proportional to the radial integral∫ ∞

0

Rεl′(r)Rnl(r)jL(qr)r2 dr, (7.12)

where Rnl(r) and Rεl′(r) are the radial wave functions of the initial and final
states, jL(x) is the spherical Bessel function, the values of l, l′ and L must satisfy
the triangle inequality, and l+ l′+L must be even due to parity selection. The
leading contribution to this integral at large q comes from small r ∼ 1/q, where
the radial functions behave as (in atomic units: a0 = 1, c = 1/α ≈ 137)

Rnl(r) ' Arl
[
1− Z

l + 1
r + . . .

]
, (7.13)

A being the normalization factor, and with a similar expression for Rεl′(r).
From Eqs. (7.12) and (7.13), it appears that the leading contribution to the
amplitude at high q is proportional to∫ ∞

0

rl+l
′+2jL(qr) dr =

1

ql+l′+3

∫ ∞
0

xl+l
′+2jL(x) dx. (7.14)

However, the integral∫ ∞
0

xl+l
′+2jL(x) dx = 2l+l

′+1
√
π

Γ
[

3
2 + 1

2 (L+ l + l′)
]

Γ
[

1
2 (L− l − l′)

]
is identically zero for even l+l′+L, since the gamma function in the denominator
has poles for nonpositive integer arguments. This also shows that including any
even-power corrections to the small-r expansion of the wave functions, Eq. (7.13)
(which appear for any potential regular at the origin), also leads to zero con-
tributions. Therefore the amplitude in this case would decrease faster than any
power of q, i.e., exponentially.

On the other hand, the lowest-order, linear correction in either Rnl(r) and
Rεl′(r), is proportional to Z [see Eq. (7.13)], and the integral

∫∞
0
xl+l

′+3jL(x) dx
is nonzero. This determines the leading asymptotic behaviour of the amplitude,∫ ∞

0

Rεl′(r)Rnl(r)jL(qr)r2 dr ∝ Z

ql+l′+4
. (7.15)

This shows that the largest cross section for large q (i.e., the least suppression,∣∣〈f | e−iq·r|i〉∣∣2 ∝ q−8) is obtained for both initial and final s states (l = l′ =
L = 0). Similar integrals arise in the problem of atomic photoionisation at high
energies, see, e.g., Ref. [396, 397].

This power, instead of the exponent, emerges due to the Coulomb singularity
of the electron wave function at the nucleus. The singularity for the s-wave
electrons is stronger than in higher partial waves, whose expansions contain
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extra powers of r. The ionisation by slow, heavy particles is thus dominated by
s-wave contributions from small electron–nuclear distances. This means that
there is an effective atomic-structure enhancement of such scattering processes
involving s-waves, and that relativistic effects may be significantly larger than
expected.

7.3.2 Relativistic enhancement

Indeed, the situation in the relativistic case is quite different. Consider the
Dirac wave function for an electron in the central field of the atom,

ψnκm =

(
Fnκ(r) Ωκm(θr, φr)

iGnκ(r) Ω−κ,m(θr, φr)

)
, (7.16)

where κ is the Dirac quantum number [κ = −(l + 1) for j = l + 1/2, and κ = l
for j = l + 1/2, j being the total angular momentum], and Ωκm is the two-
component spherical spinor. At small r, the radial functions of the large and
small Dirac components behave as [398]

Fnκ(r) ' B rγ−1 (γ − κ+ Cr + . . . ), (7.17a)

Gnκ(r) ' −ZαB rγ−1(1 +Dr + . . . ), (7.17b)

where B is a normalization constant, γ =
√
κ2 − (Zα)2,

C = − Z

2γ + 1
[1 + (2γ − 2κ+ 1)(1 + α2εnκ)], (7.18)

εnκ is the electron energy, and D ∼ C.
In the nonrelativistic limit (Zα→ 0, γ = |κ|) Gnκ vanishes, and Eq. (7.17a)

reduces to Eq. (7.13). However, the corrections in γ = |κ| − (Zα)2/2|κ| + . . .
actually change the power of r that appears in the expansion. As a result, the
lowest-order in r term, which vanished in the nonrelativistic case [see Eq. (7.14)],
now becomes∫ ∞

0

rγ+γ′jL(qr) dr =
2γ+γ′−1

qγ+γ′+1

√
π

Γ
[

1
2 (L+ γ + γ′ + 1)

]
Γ
[

1
2 (L− γ − γ′ + 2)

] , (7.19)

which is nonzero. For example, for the initial and final s-wave states [κ = −1,
γ = γ′ ' 1− (Zα)2/2], we have∫ ∞

0

r2γj0(qr) dr =
Γ(2γ) sin[π(1− γ)]

q2γ+1
' π(Zα)2

2 q3−(Zα)2
. (7.20)

If one considers the contribution from a p1/2 state (κ = 1) for either the bound
or continuum electron, or both, the power of the q remains the same, but the
coefficient is further suppressed by a power of Zα. This is true for scalar,
pseudoscalar, vector, and pseudovector interactions2. The small component
(G) is suppressed by ∼ Zα, while the lowest-order term in the large component
is suppressed by the factor κ− γ ∼ (Zα)2 [see Eqs. (7.17a) and (7.17b)].

2For vector, scalar, pseudovector, and pseudoscalar interactions, the atomic structure factor
is proportional to integrals of the form

∫
(FF ′ ± GG′)jLr

2 dr and
∫

(FG′ ∓ GF ′)jLr
2 dr,

respectively
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Figure 7.3 The ratio R of the atomic structure factor
∣∣〈εs1/2| e−iq·r|3s1/2〉∣∣2 for the ionisation of 3s1/2 elec-

trons in iodine (I3s1/2 = 1.1 keV, ε = 2 keV) calculated with relativistic (hydrogen-like Dirac) wave functions
to that obtained with nonrelativistic wave functions, using the true nuclear charge Z = 53. (The momentum
conversion factor is 1 MeV/c ≈ 268 a.u.)

Thus we see that not only is the exponential suppression removed, but even
the power suppression is significantly weaker than that found in the nonrela-
tivistic case. Note that the cross section goes as the square of the amplitude,
meaning that the momentum-transfer dependence of the leading atomic struc-
ture contribution to the cross section is proportional to q−6+2(Zα)2 (compared

to q−8 in the nonrelativistic case, and e−(q/pe)
2

in the “naive” adiabatic case).
For a finite-range interaction, the cross section, which is to be integrated over
q, contains the squared propagator (q2 + m2

pc
2)−2 (mp is the mass of the ex-

change particle); the atomic structure factor is unchanged, and our conclusions
remain the same. This result indicates that relativistic effects actually give the
dominating contribution to the amplitude, and that therefore a nonrelativistic
treatment of such problems can greatly underestimate the size of the effect.

We have verified this enhancement numerically. In Fig. 7.3, we plot the
ratio of the atomic structure factor calculated using relativistic Dirac-Coulomb
wave functions to those calculated using nonrelativistic Schrödinger functions.
The calculations were performed for the 3s state of iodine, which would give
the dominant contribution to the ionisation rate due to WIMP–electron scat-
tering at the energy scale relevant to the DAMA experiment [370] (the 1s and
2s electrons are bound too tightly in I and Xe to become ionised with the en-
ergy deposition observed by DAMA). We use the true nuclear charge (Z = 53

for iodine) instead of the effective nuclear charge Z̃. The standard definition

Z̃ = n
√

2Inl, where n is the principal quantum number and Inl is the electron
ionisation energy, provides a sensible approximation for the wave function at
intermediate distances. At very small distances, however, the nuclear charge is
essentially unscreened. Therefore, the atomic wave functions at small distances
are proportional to the pure Coulomb wave functions. Given the importance
of small electron–nuclear separations, such processes are strongly dependent on
the atomic number, and using a too-small Z̃ can lead to orders-of-magnitude
underestimation of the probability. The best way to treat this problem is to use
a self-consistent field approach, such as the relativistic Hartree-Fock method.

A full comparison of the relativistic and nonrelativistic calculations of the
atomic kernel of iodine is presented in Fig. 7.4 for relatively high values of the
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Figure 7.4 Comparison of the contribution of the 3s state to the atomic kernel of iodine in the relativistic and
nonrelativistic approximations: (left) as a function of the energy deposition (∆E) for a value of the momentum
transfer of q ' 9 MeV, and (right) as a function of q for ∆E ' 4 keV.

momentum transfer, q (only high values of q can contribute the cross section).
For consistency, the relativistic and nonrelativistic calculations are performed
using the exact same methods and computer codes (the relativistic Hartree-
Fock method, described below); the nonrelativistic limit is achieved by letting
the speed of light approach infinity in the code before the Dirac equation is
solved. As q → 0, the difference between the relativistic and nonrelativistic ap-
proaches diminishes, as expected. There are slight numerical instabilities in the
nonrelativistic calculations visible in the plots in Fig. 7.4 (solid black line); these
instabilities do not appear in the relativistic calculations. This is because in the
relativistic case the atomic kernel is dominated by a single contribution coming
from very low r, while the nonrelativistic case has contributions from larger r
which cover several oscillations of the (very rapidly oscillating) jL function. (Of
course, the instabilities in the nonrelativistic calculations can be removed by
increasing the parameters of the numerics, however, this is not necessary for the
current purpose.)

7.4 Calculations

7.4.1 Calculations of the atomic kernel

To perform the atomic structure calculations we use the relativistic Hartree-
Fock method, which is described briefly in Appendix A. Calculations of the
bound-state energies for the core orbitals of atomic Na, Ge, I, Xe, and Tl are
given in Table 7.1.

In Fig. 7.5, we plot the contributions of the different core states to the atomic
kernel (7.8) for iodine as a function of the energy deposition, for a fixed momen-
tum transfer. It is seen that the s-states dominate the amplitude, as expected.
In Fig. 7.6 we plot the 3s core contribution to the iodine atomic kernel for
different values of the maximum included continuum-state angular momentum
as a function of the momentum transfer for fixed energy deposition. For very
low values of momentum transfer, only the j = 1/2 states give significant con-
tributions. For intermediate values, higher angular momentum states become
important. For the high momentum transfer values, which are those relevant to
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Table 7.1 Relativistic Hartree-Fock ionisation energies for the core states of Na, Ge, I, Xe, and Tl in atomic
units (1 au = 27.211 eV).

Atom Na Ge I Xe Tl
Z 11 32 53 54 81

1s1/2 40.54 411.1 1226 1277 2851
2s1/2 2.805 53.46 193.0 202.5 484.5
2p1/2 1.522 47.33 180.6 189.7 465.7
2p3/2 1.515 46.15 169.6 177.7 465.7
3s1/2 0.182 7.410 40.53 43.01 117.1
3p1/2 5.325 35.34 37.66 108.2
3p3/2 5.157 32.21 35.33 108.2
3d3/2 1.616 24.19 26.02 91.71
3d5/2 1.592 23.75 25.54 91.71
4s1/2 0.569 7.759 8.430 26.88
4p1/2 0.282 5.869 6.453 22.92
4p3/2 0.273 5.450 5.983 22.92
4d3/2 2.342 2.711 15.65
4d5/2 2.274 2.634 15.65
5s1/2 0.876 1.010 4.617
5p1/2 0.434 0.493 3.230
5p3/2 0.390 0.440 3.230
4f5/2 5.784
4f7/2 5.784
5d3/2 0.967
5d5/2 0.967
6s1/2 0.360
6p1/2 0.201
6p3/2 0.201
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Figure 7.5 Core-state contributions to the atomic kernel [defined in Eq. (7.8)] for I as a function of the energy
deposition, ∆E, at momentum transfer q ' 4 MeV. The s states dominate the amplitude; this domination only
increases at larger q. The contributions from the d states (not shown) are orders of magnitude smaller again.
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Figure 7.6 Contribution of the 3s core state to the atomic kernel for I as a function of the momentum
transfer, q, at ∆E ' 2 keV. Shown separately are the kernels with different values for the high-l cut-off for the
continuum-state electron orbital angular momentum. The higher l continuum states contribute significantly at
low values of q, however, at the values relevant to this work (q >∼MeV), they contribute negligibly.

the ionisation problem, the higher angular momentum states contribute negligi-
bly and only s-wave continuum states are important. Note that this is a result
of the relativistic effects; in the nonrelativistic limit higher angular momentum
states contribute non-negligibly because the s-state contribution is significantly
underestimated. The general result is that in the calculations, only s-states need
to be considered both for the bound states and for the continuum states, as sug-
gested above; p-states contribute at the few-percent level. We have checked this
in the direct calculations of the cross section as well, and it continues to hold
true. We note, however, that in our full atomic structure calculations we keep
all higher angular momentum states until the cross section converges explicitly
to the ∼ 0.1% level. For lower values of energy deposition (∆E . 1 keV) this
condition becomes less strong. Though not directly relevant to the DAMA ex-
periment, this may be important for other types of electron-recoil experiments,
such as those suggested in Refs. [399, 400].
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Figure 7.7 Comparison of the different Lorentz structures for the 3s core-state contribution to the atomic
kernel for I as a function of the energy deposition, ∆E (with q ' 4 MeV), and of the momentum transfer, q
(with ∆E ' 2 keV). The pseudoscalar case gives the largest effect, since in this case the radial integrals include
a contribution from initial and final s-states with L = 1 (L = 0 for the s-s contribution to the vector and scalar
cases); the pseudovector case (zero/temporal component) gives by far the smallest contribution due to very large
cancellations in the radial integrals, see Appendix B.2.

In Fig. 7.7, we present calculations of the atomic structure factors for the
vector, scalar, pseudovector, and pseudoscalar electron interactions (see Ap-
pendix B.2). It is evident here that the electron pseudoscalar interaction gives
the largest result (for very high momentum transfer), while the pseudovector
case gives by far the smallest. The largeness of the pseudoscalar case can be
understood as follows. The Factor (Zα)2 in the numerator of Eq. (7.20) comes
from the expansion of the gamma function in the denominator of Eq. (7.19),
which approaches infinity as γ approaches unity for L = 0. For the case where
L = 1, however, this denominator is finite even in the Zα→ 0 limit. Consider-
ing an initial (bound) s-state, there appears a contribution for the pseudoscalar
and pseudovector cases that comes from the final s1/2 continuum state with
L = 1. In this case, the (Zα)2 suppression from Eq. (7.20) is removed, instead
it is replaced by just a ∼ Zα suppression which comes from the small Dirac
component that appears in the radial integral for the pseudoscalar case (B.24).
There is another enhancement by a factor of ∼ 4 due to the few roughly equal
terms in Eq. (B.24). In the pseudovector case (zero component), on the other
hand, this situation does not lead to an enhancement. Instead there is huge sup-
pression, which comes from the very large cancellation of terms in Eq. (B.25).
This means that calculations of the electron structure for the pseudovector case
are very susceptible to numerical instabilities and must be treated with great
care (if high accuracy is to be achieved). The spatial components of the pseu-
dovector interaction, however, are not small; in fact that scale essentially the
same as the vector component. For s and p1/2 waves (the only states relevant
here) the deviation of the spatial components in pseudovector case from the
temporal component of vector case is negligible; see Appendix B.2.

7.4.2 Scaling of the analytic results: a simple parametric model

In Figs. 7.8 and 7.9 we plot the contribution of several dominating core states
to the atomic kernels (7.8) for Na, Ge, I, and Xe. Several orders-of-magnitude
enhancement of the Xe/I atomic kernel compared to that of Na is observed,
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which is expected from the high-power of the Z-scaling of the electron matrix
element, and the larger relativistic factor. Using the simple expression given in
Eq. (7.20) to formulate the momentum transfer dependence of the atomic kernel
for high values of q, one may use simple Z-dependent scaling factors to reproduce
our full-scale calculations. For values below q = 1 MeV, the non-relativistic
calculations using screened hydrogen-like wave functions are sufficient, though
it should be noted that the usual notion of the effective nuclear charge Z̃nl =
n
√

2Inl is not valid. This value is chosen to reproduce the correct energies, and
gives a reasonable approximation of the wave functions at medium distances.
The ionisation cross section, however, is dominated by the wave function at very
small distances. Instead, the correct value for Z̃nl should be chosen to reproduce
the curves in Fig. 7.8.

7.5 Results

7.5.1 DAMA analysis

For our calculations of the atomic structure, we employ the system of atomic
units (~ = aB = e = 1, c = 1/α). The conversion factor for the total cross

section from atomic units is a2
B ≈ 2.8 × 10−17 cm2, and for the function 〈dσ·v〉d∆E

is a2
Bcα/2Ry ≈ 0.019 cm3/keV/day. We present the event rates in the standard

units of counts per day (cpd) per kg/keV.
In Fig. 7.10, we plot the differential cross section (7.7) for Na, I, Xe, Ge, and

Tl as a function of the total energy deposition, ∆E, for a specific set of DM
parameters and assuming the standard halo velocity distribution (7.5). Note
that the NaI detector in the DAMA experiment is doped with Tl. With a
significantly higher atomic number, the effect arising from thallium is substan-
tially larger than that from iodine; however, the small amount present in the
detector means that the DAMA signal would still be dominated by the iodine
contribution.

To a first approximation, the expected event-rate due to scattering of WIMPs
from the galactic halo can be expressed as

R(t) = R0 +Rm cos(ωt), (7.21)

where R0 is the constant or average part of the event-rate, which comes from the
velocity distribution of the WIMPs in the solar frame, and Rm is the amplitude
of the modulations in the event rate, which come from the relative motion of
the earth around the sun; the factor ωt is defined in Eq. (7.6). We do note,
however, that due to the very strong dependence of the scattering cross section
on the incident energy of the DM particles (and therefore on the DM velocity),
Rm itself depends on the phase of the earths orbit and therefore the event
rate is not purely sinusoidal. The deviations from a sinusoidal shape, however,
are modest for most of the parameter space, and do not affect the analysis
substantially.

The so-called oscillation fraction, defined asRm/R0, has a strong dependence
on the energy deposition, and on the mass of the DM particles. Fig. 7.11 shows
the mχ dependence of the differential cross section and the oscillation fraction
for iodine as a function of the deposited energy, ∆E. The energy dependence
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Figure 7.8 Plots of the atomic kernel (7.8) for several dominating core states of Na, Ge, I, and Xe, as a
function of momentum transfer q, for a fixed energy deposition ∆E = 2.0 keV.
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Figure 7.12 Total cross section (cm2) for the ionisation of NaI in the 2 – 6 keV interval assuming αχ = α
for the average (i.e. spring/fall) DM velocity distribution: (left) assuming perfect detector resolution; (right)
including the Gaussian resolution profile (7.22).
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Figure 7.13 Unmodulated event-rate R0 for NaI in the 2 – 6 keV interval assuming αχ = α in units of
cpd/kg/keV: (left) assuming perfect detector resolution; (right) including a Gaussian resolution profile (7.22).

of the oscillations increases with decreasing mχ, since in these regions only part
of the DM velocity distribution can give rise to an effect.

In order to calculate the number of events detected within a particular energy
range, the energy resolution of the detectors must be taken into account. To do
this, we convolute the calculated rate with a Gaussian:

R̃(∆E) =

∫
R(ε)g∆E(ε) dε, (7.22)

where g∆E(ε) is a Gaussian function centred at ∆E, with standard deviation
σ = 0.448

√
∆E/keV+0.0091∆E/keV as measured by the DAMA Collaboration

[401]. This has the effect of “smearing out” the 2 keV low threshold, allowing a
small fraction of events that originate from lower energies to be accepted. Note
that since there is essentially an exponential enhancement in the event rate at
lower energies (see Fig. 7.10) this has a significant impact on the results. We
also assume that the DAMA detectors are 100% efficient, and importantly, that
the efficiency is not a function of the energy deposition. This is a generous
assumption which we make in order to be as conservative as possible.

Figure 7.12 shows the dependence of the cross section for the ionisation of
NaI by DM–electron scattering on the DM particle mass and the mass of the
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Figure 7.14 Modulation amplitude Rm for NaI in the 2 – 6 keV interval assuming αχ = α in units of
cpd/kg/keV (including the Gaussian resolution profile).
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Figure 7.15 The calculated modulation fraction (Rm/R0) expected for the scintillation signal in the 2 – 6
keV interval for NaI (including the Gaussian resolution profile).
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Figure 7.16 The value that αχ must take in order to reproduce the DAMA modulation signal of 0.0112
cpd/kg/keV in the 2 – 6 keV interval: (left) assuming perfect detector resolution; (right) including the Gaussian
resolution profile (7.22).
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(vector) exchange particle. The plot is made arbitrarily with αχ = α; the
cross section is linear in α2, so with αχ = 10−2α, for example, the value cross
section would be smaller by a factor of 10−4. The unmodulated event rate in
the energy interval 2–6 keV, relevant to the DAMA experiment, is shown in
Fig. 7.13. Shown separately are the event rates calculated assuming a perfect
detector resolution, and assuming the Gaussian resolution as in Eq. (7.22). Note
in particular, that the Gaussian profile allows events in this region to be caused
by significantly smaller DM masses, and also greatly increases the observed
event rate. This is entirely due to the fact that events originating at smaller
energies (which have a much greater amplitude) are allowed to “leak” into the
detection interval. As is clear, the dependence on the detector resolution is
extreme. We note in particular, there is a clear favour of low mχ, and that the
modulation fraction is large. The corresponding modulated event rate (including
the Gaussian profile) is shown in Fig. 7.14.

The DAMA collaboration observes a significant modulation in the event
in this 2–6 keV interval, as described above. The amplitude of the observed
modulation is [356]

RDAMA
m = 1.12(12)× 10−2 cpd/kg/keV, (7.23)

amongst a background signal of approximately 1 cpd/kg/keV, which is at-
tributed mostly to noise. To perform our analysis, we assume this modulation
signal can be entirely attributed to ionisation of NaI by the scattering of WIMPs
on the electrons. Figure 7.16 shows the value that the effective DM–electron
coupling constant (αχ) must take in order to give the required modulation am-
plitude.

In the WIMP–electron scattering scenario, the large modulation fractions
(as reported by the DAMA [356], CoGeNT [402] and XENON100 [384] Collab-
orations) are reproduced naturally. The expected modulation fraction R0/Rm
is plotted explicitly for DAMA in Fig. 7.15. The fraction is very large, over
20% for large portions of the parameter space, even reaching as high as 50% for
reasonable values. Note that this is assuming just the standard Maxwellian halo
model for the DM velocity distribution (7.5). The large modulation is due to the
fact that the ionisation cross section is highly velocity dependent. This is in con-
trast to WIMP–nucleon scattering cross section, where exotic DM distributions
need to be assumed in order to replicate the large modulation fraction.

It is also seen that the massmv of the mediating particle (e.g., a dark photon)
must be light. In order to keep the DM–electron coupling small (αχ . 10−2α,
required from collider searches, e.g., Ref. [403]), it is seen in Fig. 7.16 that
mv . 1 MeV. Note that, from stellar constraints, the mass of the mediator
cannot be smaller than ∼ 200 keV [404]. It is possible to reproduce the DAMA
modulation within these constraints for a relatively wide range of parameters.

Note that in performing the analysis, we have paid no attention to the shape
of the recoil spectrum, just choosing the parameters to reproduce the total
number of counts in the given interval. This procedure represents the most
conservative case; if the detectors were any less efficient, the acceptable values
of αχ would be forced to be larger. Taking these factors into account can
therefore only strengthen out conclusions. In Fig. 7.17, the calculated spectrum
is compared to the results of the DAMA experiment for a few specific sets of DM
parameters that can reproduce the observed modulation amplitude averaged
over the 2 – 6 keV interval.
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Figure 7.17 Calculated modulated event rate spectrum Rm for DAMA for a few specific choices of DM
parameters which are able to replicate the amplitude of the observed modulation.

7.5.2 XENON100 analysis

A recent analysis of data from the XENON100 experiment has also investigated
WIMP-induced electron-recoil events [383, 384]. These experiments also ob-
served modest evidence for an annual modulation (at the 2.8σ level) – though
the phase does not match perfectly with that observed by DAMA [384]. By
assuming their result was a positive measurement of an annual modulation, the
XENON Collaboration [384] (see also Ref. [383]) determined the best fit for
their data to indicate an unmodulated event rate of

RXe100
0 = 5.5(6)× 10−3 cpd/kg/keV, (7.24)

with a modulation amplitude of

RXe100
m = 2.7(8)× 10−3 cpd/kg/keV, (7.25)

with a quoted a background of 5.3×10−3 cpd/kg/keV [383]. Note that the back-
ground (or unmodulated signal) is smaller than the DAMA modulation ampli-
tude by a factor of two.

The XENON100 Collaboration has performed a detailed analysis of the elec-
tron recoil acceptance and efficiency [391, 406]. The electron recoil acceptance
is given as a function of the observable scintillation photoelectrons is given in
Fig. 1 (bottom) of Ref. [391]. Roughly, the acceptance rate can be given by the
expression

ERacc(S1) ≈ Ceff

(
1− e−S1/3

)
, (7.26)

where Ceff is an efficiency parameter with a best-fit value around 0.9 [391]. To
be conservative, we take Ceff = 0.85.

There is also the need to convert between ‘S1’ – the observed scintillation
signal in photoelectrons (PE) – and the deposited energy deposition, ∆E. The
conversion is given in Fig. 2 of Ref. [391]. We model this as a power law
S1(∆E) = ∆Ex, and take x = 1.58, which gives the best fit at 3 PE (2 keV),
noting that the signal is dominated by lower energies. Then, the event rate for
n detected photoelectrons is then obtained by applying “Poisson smearing” to
the calculated

R̃n =

∫
R(ε)Pn(ε)ERacc(n), (7.27)
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Figure 7.18 Calculated scintillation event rate for Xe (left) for 2 PE, and (right) for 3 PE.
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Figure 7.19 The calculated (left) unmodulated event rate (for fixed αχ = α), and (right) modulation fraction
(Rm/R0), for the scintillation signal in the 3 – 14 PE interval (corresponding to 2 – 6 keV) for Xe.

where the Poisson distribution is

Pn(ε) = e−S1(ε)S1(ε)n

n!
.

Note also, that we do not take into account the PMT resolution, σPMT = 0.5PE
[391, 407]. Taking this into account would allow a small fraction of the events
at 2 PE to survive the cut and enter the observed rate. Since the rate at 3
PE is highly suppressed compared to the rate at 2 PE, as shown in Fig. 7.18,
this choice should be considered conservative. We do note, however, that the
Poisson smearing itself allows events that originate at energies lower than 2 keV
to be detected with 3 PE, and is in this way similar to the simplistic Gaussian
smearing employed for the DAMA analysis.

In Fig. 7.19 we present our calculations for the unmodulated event rate
R0 (for a fixed coupling αχ = α) and the modulation fraction Rm/R0 for the
XENON100 scintillation experiment, in the 3 – 14 PE range. The modulation
fraction observed in the XENON100 experiment (7.25) is extremely large. We
find, however, that this alone is not enough to discount the WIMP hypothesis
as a source for the modulations. The calculated modulation fraction is very
large, easily reaching 50% for very low values of mχ < 1 GeV. Note that the
oscillation fraction is independent of the coupling constant.

By assuming the DAMA result is due to electron-interacting WIMPs, we can
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Figure 7.20 (Left) The umodulated event rate, and (Right) the modulation amplitude, that would be expected
in the XENON100 scintillation experiment in the 3 – 14 PE interval (corresponding to 2 – 6 keV) assuming the
DAMA modulation signal is a positive WIMP detection (the value of αχ for each point on the parameter plot
is shown in Fig. 7.16).

calculate the expected scintillation signal in xenon relevant to the XENON100
electron-recoil experiment. For each set of DM and mediator masses, we calcu-
late the coupling required to reproduce the DAMA modulation signal in the 2
– 6 keV interval, assuming it is due to WIMP–electron scattering on the NaI
crystal. These couplings, shown in Fig. 7.16 (bottom), are used as inputs into
the calculations for xenon. Figure 7.20 shows the resulting calculated event
rates that would be generated in liquid xenon summed between 3 and 14 pho-
toelectrons (PE), as in the XENON100 electron recoil experiment [383, 384].
For convenience of comparison with the DAMA calculations, the rate is given
in units of cpd/kg/kev – for which we calculate the total cpd/kg, and divide by
4 keV (corresponding to the 2 – 6 keV interval).

The XENON100 Collaboration sees an average (background) signal of around
0.005 cpd/kg/keV, with a potential annual modulation of about half this size.
As is seen from the calculations of the unmodulated event rate R0 for xenon,
presented in Fig. 7.20 (left), there is room in the parameter space that can ac-
count for the DAMA modulation and still be consistent with XENON100. The
modulated rate, presented in Fig. 7.20 (bottom), is also in reasonable agree-
ment. We note, however, that these results are extremely dependent on the
parameters of the detector acceptance, efficiency, and resolution.

In Fig. 7.21, we plot the modulated part of the ionisation event rate for
xenon for a few specific choices of DM parameters that are able to reproduce
(the amplitude of) the DAMA modulation signal. This shows that a detailed
knowledge of the detector efficiency at very low energies is crucial for interpreting
observed scintillation signal in terms of electron interacting DM. A discussion
of the low energy efficiency is presented in Ref. [391] (see also Refs. [362, 405,
406, 408] and Ref. [409]).

7.5.3 XENON10 ‘ionisation only’ analysis

The XENON10 Collaboration [410] has performed an analysis of the ionisation-
only signal in their liquid xenon detector. This data has been analysed in terms
of low mass electron-interacting WIMPs [399], and limits have been set [411].

In Fig. 7.22 we plot the event rate for the primary ionisations generated
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Figure 7.21 Calculation of the modulated ionisation event rate spectrum Rm for xenon (relevant to
XENON100) for a few specific choices of DM parameters which are able to replicate the amplitude of the
observed DAMA modulation. The corresponding signals generated in NaI are plotted in thin solid lines (almost
indistinguishable from the xenon rates on this scale).
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Figure 7.22 Calculation of (left) the unmodulated single primary-electron ionisation signal in xenon (relevant
to the XENON10 experiment [410]) for a fixed coupling of αχ = α, and (right) the modulation fraction.

in a xenon detector due to the scattering of electron-interacting WIMPs. Note
that this is a lower-bound on the generated events, since the primary ionisations
(particularly from lower shells) will also induce secondary ionisations with some
probability. The dominating contribution at low DM masses comes from the
upper most shells; this is in line with previous calculations [411]. For very large
DM masses (and large mediator masses) higher energy ranges play a significant
role also. The spectrum of events for a few selected values of the DM mass is
given in Fig. 7.23.

Figure 7.24 shows calculations of the ionisation rate for xenon integrated over
all energy depositions (relevant to the ionisation-only XENON10 experiment
[410]), assuming the DAMA modulation is due to electron-interacting WIMPs.
Note that presented here is the calculation of “first-order” ionisation events
only; i.e. the rate of ionised electrons Some fraction of these ionised electrons
will recombine emitting photons which may also ionise other atoms. Also, when
it is not the outermost electron which is ionised, the decay of the outer electrons
to fill the created vacancy will also release photons which will ionise subsequent
atoms with some probability. For a discussion, see Ref. [411].

The modulation fraction for the ionisation-only signal is substantially smaller
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Figure 7.24 Calculation of the expected unmodulated ionisation-only signal in xenon (relevant to the
XENON10 experiment [410]) assuming the DAMA modulation signal (7.23) is a positive WIMP detection.

than for the scintillation signal; it is below 10% for most of the parameter
space. This is because the low-energy cut-off required for the scintillation signal
means the observed signal can only originate from the high-energy (and high
momentum transfer) tail of the cross section. In this region, the cross section
becomes highly velocity dependent, hence the large modulation fraction; see
Fig. 7.11.

The XENON10 Collaboration [410] observes at most 30 cpd/kg; at the 90%
confidence level, the authors of Ref. [411] put a bound on the single-electron
ionisation rate at 23.4 cpd/kg. The two-electron rate is substantially smaller
at < 4.23 cpd/kg. As is clear from the calculations of the expected rate in
xenon Fig. 7.24, there is no room in the relevant parameter space that can
satisfy the DAMA modulation and escape the XENON10 limits. The very
small error bars on the DAMA modulation ensure that even taking the DAMA
modulation amplitude as many standard deviations smaller than the actually
observed midpoint cannot significantly change this conclusion.

Note that we do not take into account any secondary ionisation that occurs.
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Figure 7.25 Calculations for the expected ionisation-only signal in xenon (relevant to the XENON10 experi-
ment [410]) assuming the modulation signal observed in the XENON100 scintillation experiment [384] is due to
WIMP–electron scattering. (Left) Value that αχ must take to explain the XENON100 modulation (midpoint);
(right) the resulting unmodulated event rate R0 for XENON10 (single-electron primary ionisations only).

This is an effect which would have between 1 – 10% effect on the calculated rates,
acting to increase them. The efficiencies of the detector is essentially unity [411].
Therefore, our calculations represent a lower bound on the expected event rate,
and are in this sense as conservative as reasonably possible. Taking the higher-
order ionisations into account would only act to strengthen our conclusion that
the DAMA modulation is incompatible and XENON10 limits.

We can also perform calculations to investigate weather the XENON100
scintilation and XENON10 ionisation experiments can be mutually consistent
with the electron-interacting WIMP assumption. Figure 7.25 shows calcula-
tions of the “ionisation-only” event rate for xenon (integrated over all energy
depositions), assuming the modulation observed in the XENON100 experiment
(7.25) is due to electron-interacting WIMPs. This shows that for relatively large
values of mχ and mv the XENON100 modulation may be compatible with the
XENON10 limits.

7.5.4 CoGeNT analysis

Another direct-detection experiment, CoGeNT, employs a p-type point-contact
germanium detector to search for WIMPs, in particular for low mass (mχ . 10
GeV) [402, 412, 413]. The CoGeNT Collaboration also sees modest evidence of
an annual modulation in the event rate (at the 2.2σ level), with a phase that
agrees with the standard halo assumption [402]. The modulation is seen in the
“bulk” events (see Ref. [402]) in the 0.5 – 2 keV interval; an annual modulation
in the 2 – 4 keV interval is consistent with zero. From their data, we extract a
modulation amplitude of

RCoGeNT
m = 0.34 cpd/kg/keV (7.28)

in the 0.5 – 2 keV interval [402, 412]. The CoGeNT rate in the higher energy
energy bins is consistent with zero annual modulation.

The CoGeNT modulation has been previously analysed in terms of nuclear
recoils [414] (see also Refs. [415, 416]). It has also been noted that the CoGeNT
modulation may be consistent with electron recoils [366]. Here, we present a
more detailed analysis of the CoGeNT modulation in terms of electron recoils.
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Figure 7.26 Unmodulated event-rate R0 (left) and the modulation fraction Rm/R0 (right) for germanium in
the 0.5 – 2 keV interval assuming αχ = α in units of cpd/kg/keV.
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Figure 7.27 The value that αχ must take in order to reproduce the CoGeNT modulation signal of ∼ 0.34
cpd/kg/keV in the 0.5 – 2 keV interval.
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Figure 7.28 Calculation of the expected CoGeNT signal (germanium) in the 0.5 – 2 keV interval assuming
the DAMA modulation signal (in the 2 – 6 keV interval) is a positive WIMP detection. The value of αχ for
each point on the parameter plot is shown in Fig. 7.16.

Figure 7.26 presents the event rate that would be generated (from atomic ion-
isation due to electron-interacting WIMPs) in a germanium detector averaged
over the 0.5 – 2 keV energy interval for a fixed coupling constant (αχ = α). The
dominant contributions at these energy scales come from the 3s and 2s shells
(see Table 7.1). In Fig. 7.27 we present the values that αχ must take for each
value of DM mass mχ and mediator mass mv in order to reproduce the observed
modulation (7.28). Note that for fairly light DM particles (mχ ∼ 1 – 10 GeV)
and reasonable values for the mediator mass (mv ∼ 0.1 – 1 MeV), the signal
can be reproduced with values for the couling as small as αχ ∼ 5× 10−4α; this
can be considered as reasonably consistent.

Figure 7.28 shows the signal expected to be generated in the germanium
detector of the CoGeNT experiment in the 0.5 – 2 keV interval, assuming the
the DAMA modulation signal of ∼ 0.01 cpd/kg/keVin the 2 – 6 keV interval is
due to WIMP–electron scattering. Since the CoGeNT experiment is sensitive
to lower energy depositions than the DAMA experiment, the expected signal
is very large, but more or less consistent with the amplitude of the DAMA
modulation (though note that for these parameters, the spectral shape of the
DAMA modulation is not reproduced well). Also immediately noticeable is the
large relative proportion of the oscillating signal, which is well above 20% for
large portions of the parameter space.

In Fig. 7.29 we plot the energy dependence of the modulation amplitude
for several specific choices of DM parameters that roughly agree both with the
DAMA and CoGeNT modulations. Also shown is the data point for the Co-
GeNT modulation in the 0.5 – 2 keV window. Is is seen that the electron-recoil
spectrum agrees fairly well with the CoGeNT data, and that the calculations
are consistent with the observation of a modulation below 2 keV, but not above.
We do note, however, that the data from the CoGeNT experiment is insufficient
to draw any significant conclusions, and that this analysis does not rule out
other potential sources for the CoGeNT modulation.

Figure 7.30 shows the signal that would be generated in xenon for the 2 –
5.8 keV energy range assuming the CoGeNT modulation was due to electron-
interacting WIMPs. The generated signal is very small, and easily consistent
with the XENON100 limits [384].
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Figure 7.29 Calculation of the modulated event rate spectrum Rm for germanium (relevant to the CoGeNT
experiment) for a few specific choices of DM parameters which are able to replicate the amplitude of the observed
DAMA modulation.
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7.6 Conclusion

The DAMA Collaboration [356] observes a significant modulation in the event
rate in the 2–6 keV interval with an amplitude of

RDAMA
m = 1.12(12)× 10−2 cpd/kg/keV. (7.29)

One of the leading hypotheses for the source of this modulation is that it is due
to atomic ionisation due to scattering of WIMP dark matter of atomic electrons
[369]. In this chapter, I performed high-accuracy calculations of the expected
event rates for the NaI detector of DAMA, as well as the germanium detector
for the CoGeNT Collaboration [402, 412, 413], and the liquid xenon detectors
used by the XENON10 [410] and XENON100 [362, 383, 384, 391, 405, 406]
Collaborations.

The favoured region from the comparison of DAMA with the XENON100
experiment is for low DM masses, mχ . 10 GeV and low mediator masses mv .
1 MeV. We note that in lieu of a more thorough investigation of the detector
efficiency, acceptance, and resolution by the DAMA Collaboration, we employed
a simple Gaussian resolution profile (based on resolution measurements of the
DAMA Collaboration [401]). This amounts to a very generous assumption for
the DAMA modulation, while we take very conservative assumptions for the
XENON100 rate.

Still, large portions of the parameter space can be excluded based on the
XENON100 constraints [383]. For the region above mχ & 10 GeV and mv &
2 MeV (corresponding to the 5×10−2 cpd/kg/keV contour of Fig. 7.20 (left), the
exclusion is 7.5σ, taking into account both the DAMA and XENON100 uncer-
tainties. For the region above mχ & 1 GeV and mv & 0.3 MeV (corresponding
to the 2 × 10−2 cpd/kg/keV contour of Fig. 7.20 (left), the exclusion is 5.2σ.
The region below mv . 0.2 MeV is ruled out based on stellar bounds [404], and
the region above mv & 2 MeV is ruled out based on the size of the coupling
strength.

The XENON10 Collaboration [410] observes at most 30 cpd/kg; at the 90%
confidence level, the authors of Ref. [411] put a bound on the single-electron
ionisation rate at 23.4 cpd/kg. The two-electron rate is substantially smaller at
< 4.23 cpd/kg. This allows us to place very tight constraints on the DM parame-
ter space. For the region below mχ . 25 GeV and mv . 10 MeV (corresponding
to the 45 cpd/kg contour of Fig. 7.24, the exclusion is 3.1σ. For the region be-
low mχ . 2 GeV and mv . 1.5 MeV (corresponding to the 102 cpd/kg contour
of Fig. 7.24, the exclusion is 6.5σ. For all the regions below mχ . 0.2 GeV
and mv . 0.1 MeV (corresponding to the 104 cpd/kg contour of Fig. 7.24, the
exclusion is 9.3σ.

Note that these limits are conservative. We ignored the (very poor) fit the
DAMA data in the best-case scenario, and calculated only lower bounds on the
expected rates in both XENON10 and XENON100 experiments. Taking the
DAMA spectrum into account, and including the higher-order processes in the
xenon experiments would lead to significantly more stringent limits. Also, all of
my calculations are relative impervious to errors, since they are based on ratios
of calculations performed using the same code. Any DM parameters outside
those considered directly in our analysis either cannot account for the DAMA
modulation (as demonstrated in Fig. 7.16) or have been previously ruled out
from stellar bounds [404].
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Importantly, we note that the XENON10 and XENON100 constraints are
complementary, in that they each “favour” opposite ends of the parameter space
(with XENON100 favouring low mχ and low mv, and XENON10 favouring large
mχ andmv). Therefore, by combining the two sets of constraints, we can exclude
the entire parameter space for electron-interacting WIMPs as the source of the
DAMA annual modulation. All regions of the parameter space are excluded
by at least 5.2σ, with most of the parameter space excluded by at least 7σ.
The part of the parameter space that is favoured by the “DAMA-only” analysis
(that is, requires the smallest coupling constants, see Fig. 7.16) corresponds to
very low values of mχ and mv, and is excluded by more than 9σ.
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CHAPTER 8:
Concluding Remarks

8.1 Conclusions and summary

This thesis explored the possibility of using of high precision atomic and molec-
ular physics to study fundamental interactions at low energy and to search for
dark matter. Several approaches were considered, which reflects the broad range
of physics that can be probed in this way. This avenue is complementary to the
physics tests which are performed at very high energy (e.g. at CERN).

I presented new calculations of parity-violating effects in atoms. By con-
sidering several approaches, including exploiting the very high accuracy that
is possible in simple systems, the very large effects that can be found in more
complex systems, and studying processes that are sensitive to hadronic parity
violation, I show that several new systems may be particularly stong candidates
for future experimental work.

I then considered the interaction of atomic systems with various background
“cosmic” fields. Candidates for such fields include dark matter (e.g. axions) and
physics described by extensions to the standard model. By combining my cal-
culations with existing experimental results, new limits on several parameters
of physics beyond the standard model were set. Subsequently, I considered the
specific case of axion dark matter in greater detail. By calculating several new
effects that an axion field would induce in atoms, I show that axion searches
based on these new effects can be complimentary to the existing searches. Cru-
cially, the effects I consider are linear in the (extremely small) parameter that
quantifies the axion interaction strength; most current search techniques are
based on effects that are at least quadratic in this parameter.

Finally, I also considered the interaction of WIMPs (weakly interacting mas-
sive particles) with electrons, more specifically the WIMP-induced ionisation of
atoms and molecules. By demonstrating that relativistic effects actually give the
dominant contribution to such a process, I showed that non-relativistic calcula-
tions may underestimate the cross section by many orders of magnitude. This
is a particularly significant finding, since all previous calculations relating to
this problem were done using non-relativistic wavefunctions. Then, by employ-
ing accurate relativistic methods to calculate model-independent cross sections
and event rates, I investigated implications this has for the interpretation of
the annual modulation signals from the DAMA, XENON, and CoGeNT direct-
detection experiments. By calculating the event rate that would be expected in
the XENON100 and XENON10 experiments assuming the DAMA modulation
was due to electron-interacting WIMPs, and comparing this to the limits set by
those experiments, I rule out electron-interacting WIMPs as the source of the
DAMA modulation by more than 5σ for all relevant parameter space.

8.2 Future work

• There is currently extensive experimental work under way with the aim of
measuring nuclear spin independent (and nuclear spin dependent) parity
nonconservation amplitudes in Ba+, Ra+, and Fr, see Sec. 2.4. It is imper-
itive that the accuracy of the theoretical calculations is at the same level
as that of the experiment in order to obtain useful information about the
see electroweak parameters. However, currently, there is less than perfect

135



8.2. Future work B M Roberts

agreement between the calculations of several groups, see Sec. 3.2. The
double core polarisation effect considered in Sec. 4 may account for some
of the discrepancy, however, a full ab initio analysis with improved atomic
structure techniques is required. One way to do this would be to extend
the correlation potential method (see Sec. A.4.2) to include the so-called
ladder diagrams [190].

• Recently, the group from Heraklion, Greece, has developed an optical cav-
ity that can enhance parity violating (optical rotation) signals by around
four orders of magnitude [106]. If combined with the further parity vio-
lation enhancement found in diatomic molecules, this signal enhancement
can be significantly increased. Accurate measurements of parity violation
in molecules is a very exciting prospect that may lead to important dis-
coveries, including in searching for physics beyond the standard model,
and in the study of parity violation in the hadron sector. So far, however,
a successful measurement of parity violation in molecules has not been
achieved. Theoretical considerations and calculations are crucial for suc-
cess in this field. Accurate calculations are required in order to interpret
the measurements in terms of fundamental physics parameters. This is
needed to be able to place constraints on physics beyond the standard
model, and to interpret the results in terms of nuclear theory. Also of
equally high importance is the requirement to identify suitable systems
for study. Future work is to perform calculations of parity violation (opti-
cal rotation) for molecules suitable for the “optical cavity enhanced”-type
measurements discussed above.

• In Ch. 6, I presented calculations for the atomic electric dipole moments
induced via the interaction of axions with electrons. I presented an order
of magnetide estimate for the size of the effect in Xe, which is enhanced by
the presence of near-degenerate opposite-parity states. What still needs
to be done is a proper analysis of the experimental techniques that can
be used to measure such a moment, to determine the efficacy of using
such an effect to probe axion dark matter. Also, I discussed the electric
dipole moments that are produced via the axion-induced nuclear magnetic
quadrupole moments in diatomic molecules. The results in this case seem
promising, however, a full analysis of the experimental feasibility is still
required.

• Also in Ch. 6, I discuss the possibility of using paramagnetic solid state
systems to search for axion-induced oscillating magnetic quadrupole mo-
ments. Such an experiment would complement the CASPEr proposal, and
may have the potential to probe much larger axion masses. A more com-
plete analysis is required to determine whether the advantages outweigh
the disadvantages in terms of sensitivity, and to determine if the spin-
coherence times can be long enough to make meaningful measurements at
the higher frequencies (i.e. larger masses).

• In Ch. 7, I demonstrated that relativistic effects gave the dominant contri-
bution to the ionisation of atoms by slow, heavy particles. In this chapter,
I was concerned primarily with WIMPs and dark matter direct detection
experiments. However, the general results I derived, as well as the code
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that was written, are also applicable to the study of ionisation of molecules
by scattering of ions. Such a process is currently used as a cancer treat-
ment. It may be possible to apply the methods and codes developed here
to this problem, potentially increasing the efficiency of the treatment by
identifying the optimal conditions.
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APPENDIX A:
Methods for Atomic

Calculations

A.1 Overview

Though I use atomic units (~ = |e| = me = 1; c = 1/α ≈ 137) throughout this
section, the factors e and me are left in the equations for the sake of clarity.

A.2 Dirac equation and relativistic orbitals

This section gives a brief overview of the Dirac theory and its application to
atomic systems. It is provided in the interest of completeness, and to give
context to the proceeding sections. The reader with a knowledge of elemen-
tary atomic theory will likely want to skip this section; and can do so without
interrupting the continuity of the chapter.

For accurate calculations, a correct treatment of spin and relativistic effects
must be included. This is particularly important for applications like the calcu-
lations of PNC effects, which are proportional to the wavefunction density on the
nucleus, where the typical electron speed is on the order of Zα, and for calcula-
tions of EDMs, which are zero in the non-relativistic limit. The Dirac equation
for an electron in the presence of the vector potential Aµ is (iαγµDµ−me)ψ = 0,
where Dµ = ∂µ + ieAµ is the covariant derivative operator.

For an N -electron atom of nuclear charge Z, and including only the electro-
static part of the potential (magnetic corrections are discussed later), the Dirac
equation can be expressed in the form Ĥ|A〉 = EA|A〉 for an atomic state A with
corresponding eigenvalue (energy) EA, where

Ĥ =

N∑
i=1

cαi · pi +mec
2(γ0

i − 1)− V nuc(ri) +

N∑
j=i+1

e2

rij

 , (A.1)

is the relativistic Dirac-Coulomb Hamiltonian (the inclusion of magnetic effects
is discussed below). Here, α(= γ0γ) and γ0 are Dirac matrices, pi is the rel-
ativistic (three-)momentum of the ith electron, rij ≡ |ri − rj |, and for large
distances the nuclear potential is given by V nuc ' Z/r. Note that, for conve-
nience, we have subtracted the electron rest-energy from the eigenvalues of the
above Hamiltonian. The total relativistic energy is given by Wnκ = Enκ+mec

2.
For single-electron (hydrogen-like) atoms, the solutions to the Dirac equation

with this Hamiltonian represent the wavefunctions of the system. For atoms
with N > 1, however, the Dirac equation with the Hamiltonian (A.1) cannot
be exactly solved. It is the

∑
i,j 1/rij term—that corresponds to the Coulomb

interaction between each pair of electrons—that causes the problem. Therefore,
in order to obtain approximate wavefunctions, this term must be approximated.
This may be done by considering the single-particle “mean-field” Hamiltonian

ĥMF = cα · p+mec
2(γ0 − 1)− V nuc + UMF, (A.2)

where each individual electron is assumed to move in the average potential
(UMF) that is created by all the other electrons. The total Hamiltonian is

then given by ĤMF =
∑
i ĥ

MF
i . Clearly, how this potential is calculated will
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determine the accuracy of this model; this will be the focus of the coming
sections.

We will consider the single-electron solutions to the (mean-field) Dirac equa-

tion; i.e. ĥMFφa(r1) = εaφa(r1). These solutions are known as single-particle
orbitals (sometimes also referred to as single-particle wavefunctions). We use
the notation ΨA and EA to represent the (“exact”) atomic wavefunction and
eigenvalue (energy) corresponding to an atom in the state A, respectively. Sim-
ilarly, we employ φa and εa to represent the single-particle orbital and eigenvalue
(also referred to as the single-particle energy, or sometimes the quasi-energy)
corresponding to orbital a.

The atomic wavefunctions are then linear combinations of one or more Slater
determinants made of these single-particle orbitals. For example, an N electron
atom in the state A with energy EA is described by the wavefunction

ΨA(r1, r2, ...rN ) =
∑
i1

∑
i2

...
∑
iN

ci1,i2,...,iNΦi1,i2,...,iN (r1, r2, ..., rN ), (A.3)

where the Slater-determinant is

Φi1,i2,...,iN (r1, r2, ..., rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
φi1(r1) φi2(r1) . . . φiN (r1)
φi1(r2) φi2(r2) . . . φiN (r2)

...
...

. . .
...

φi1(rN ) φi2(rN ) . . . φiN (rN )

∣∣∣∣∣∣∣∣∣ . (A.4)

Here, r denote the 3N spatial coordinates, and the indices i denote the basis
states (i.e. all quantum numbers). The coefficients c are subject to the normali-
sation condition in the usual way. Note that if any two of the i indices in (A.4)
are the same, the Slater determinant is zero, e.g., Φi1,ia,...,ia,...,iN = 0 (ensuring
the famous Pauli exclusion principle), and that an interchange of any two indices
results in a change of sign, e.g., Φi1,ia,...,ib,...,iN = −Φi1,ib,...,ia,...,iN (ensuring the
anti-symmetry). In practical calculations, of course the wavefunction Eq. (A.3)
cannot be used. Instead, approximate wavefunctions, which we denote ψ, are
formed from one or more Slater-determinants. How this is done specifically
depends on the approximation methods, which will be discussed below.

A.2.1 Single-particle orbitals

Employing the Dirac basis,

γ0 = γ0 =

(
1 0
0 −1

)
, γi = −γi =

(
0 σi
−σi 0

)
, γ5 = −γ5 =

(
0 1
1 0

)
, (A.5)

the four-component eigenfunctions of the Hamiltonian (A.1), which correspond
to the single-electron orbitals, can be expressed as

φnκm(r) =
1

r

(
fnκ(r)Ωκm(n)

iαgnκ(r)Ω−κ,m(n)

)
, (A.6)

where fnκ and gnκ are the large and small radial components of the Dirac
wavefunction, respectively, and

Ωκm(n) =

(−1)j−l−1/2
√

κ+1/2−m
2κ+1 Yl,m−1/2(θ, φ)√

κ+1/2+m
2κ+1 Yl,m+1/2(θ, φ)

 (A.7)
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are the two-component spherical spinors1. Here, κ = (l − j)(2j + 1) is the
Dirac quantum number that specifies the values of both the orbital (l) and total
(j = l ± s) angular momentum, m = jz is the projection of the total angular
momentum j = l + s on the (z-)axis of quantisation, l = |κ+ 1/2| − 1/2 is the
value of the orbital angular momentum, n = r/r, and Ylm are the spherical
harmonics. The small number α is “pulled out” of the function g to increase
numerical stability, and to make the relativistic scaling explicit.

The radial functions f and g satisfy the pair of first-order coupled differential
equations, (

d

dr
− κ

r

)
gnκ(r) = (V (r)− εnκ) fnκ(r), (A.8)(

d

dr
+
κ

r

)
fnκ(r) = α2

(
εnκ + 2/α2 − V (r)

)
gnκ(r). (A.9)

This separation also ensures the pleasing normalisation conditions:∫ ∞
0

dr
(
fn′κfnκ + α2gn′κgnκ

)
= δn′n, (A.10)∫ π

0

sin(θ) dθ

∫ 2π

0

dφ Ω†κ′m′(n)Ωκm(n) = δκ′κδm′m. (A.11)

The Dirac basis is a convenient choice of basis (and therefore separation of
radial functions) for atomic physics because the “large component” f gives the
main contribution to most atomic effects, and the “small component” g gives

the relativistic corrections. In fact, in the non-relativistic limit, f(r)/r
NR→ R(r),

where R(r) is the radial solution to the central-field non-relativistic Schrödinger
equation. Both the bound-state and continuum-state wavefunctions take the
same form, except that the continuum functions do not depend on the principal
quantum number n, and are instead numerated by their energy. For an orbital
with energy ε, we denote the orbital, and the large and small Dirac components
as φεκm, fεκ, and gεκ, respectively.

Note that j(= l + s) commutes with the Hamiltonian (clear from the rota-
tional symmetry); we can therefore construct eigenstates of j2 and jz, which are
the spherical spinors. Note, however, that neither l nor s individually commute
with the Hamiltonian. In fact, as can be seen from Eq. (A.6), the upper and
lower components of the wavefunction have values of orbital angular momen-
tum that differ by one unit. However, since the lower component is significantly
smaller-valued than the upper component (roughly by the ratio v/c = vα), when
relativistic effects can be considered small, the quantum number l can be con-
sidered conserved (i.e. a good quantum number) to a reasonable approximation.

A.3 Hartree-Fock method

We now discuss exactly how the mean-field potential introduced above is cal-
culated. There are many ways to form such a potential, but the best method
is to use what is known as a self-consistent field method. By a “self-consistent”

1For ease of comparison, I note that this choice is slightly different to that employed in
some places in the literature; for example, the relation between this choice and that of Johnson
et al., is f(r) = P (r), and g(r) = −Q(r)/α; see Ref. [417].
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method, we mean one in which the electrostatic potential derived from the
electron density (i.e. from the known electron orbitals) is the same as the elec-
trostatic potential that appears in the Dirac equation. The best such method is
the Hartree-Fock method, which includes both the direct and exchange parts of
the electron–electron repulsion.

In the calculations, we use the Relativistic Hartree-Fock (HF) method, in
which Eq. (A.1) is replaced by the single-electron HF Hamiltonian:

ĥHF = cα · p+mec
2(γ0 − 1)− V nuc + UHF. (A.12)

We use a Fermi-type distribution for the nuclear potential,

ρ(r) =
ρ0

1 + e(r−c)/a , (A.13)

where t = a(4 ln 3) is the “skin-thickness” and c is the “half-density radius”, see,
e.g., Ref. [418], and ρ0 is found from the normalisation condition

∫
ρ(r) d3r = 1.

The charge distribution is then given Zeρ(r). This is important since many of
the effects considered in this thesis depend strongly on the form of the wave-
functions at short distances (and, in general, because high accuracy is required).
In general, the atomic wavefunctions are then given by linear combinations of
Slater determinants of the orbitals φnκm, which are found for each of the Nc
states in the core by solving the Dirac equation

ĥHFφnκ = εnκφnκ, (A.14)

as described above. In practice, the wavefunction for the atomic core is as-
sumed in the Hartree-Fock method to be given by a single Slater-determinant;
extensions to the Hartree-Fock method are discussed below.

The key to the Hartree-Fock method is the fact that a knowledge of the
orbitals of the electrons in the core is the same as a knowledge of the electron
(and therefore charge) distribution inside the atom, from which one can easily
determine the electric potential from Gauss’ law. So, using a basic form of the
potential, one can generate a set of core orbitals. Using these orbitals, one can
generate a mean field potential that is better than the original potential. In this
better potential one can generate a better set of orbitals and so on.

The Hartree-Fock potential is given by the sum of the direct and exchange
parts of the electron–electron Coulomb interaction, UHF = Udir + U exch, with

Udirφa(r) = e2
Nc∑
i6=a

∫
φ†i (r

′)φi(r′)
|r − r′| d3r′φa(r)

U exchφa(r) = −e2
Nc∑
i 6=a

∫
φ†i (r

′)φa(r′)
|r − r′| d3r′φi(r),

(A.15)

where the summation runs over all Nc atomic core orbitals. Diagrams repre-
senting the direct and exchange integrals correponding to these equations are
shown in Fig. A.1. The equations (A.14) and (A.15) are solved iteratively until
an acceptable level of convergence has been reached. When convergence has
been achieved the method is said to be self-consistent. To start the iterative
procedure, an initial approximation for the potential is required. For this, we
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Figure A.1 Feynman diagrams (and corresponding Feynman-Goldstone diagrams) for the direct and exchange
interactions for electron v; the index a denotes the core electrons (over which a summation is assumed). The
wavy line denotes the Coulomb interaction.

use a simple parametric potential. We note, however, that this should still
be considered an entirely ab initio process, since one can use a Thomas-Fermi
potential. The use of a parametric potential only acts to increase the speed
of convergence; the self-consistent nature of the procedure ensures the start-
ing approximation has no bearing on the final result (so long as convergence is
reached).

For closed-shell atoms all the electrons are treated as core electrons, Nc = N .
This procedure can calculate the ground state energy and wavefunction for
closed-shell atoms to a very high accuracy. For atoms with M valence electrons,
it is more convenient to separate the atomic electrons into two groups; the
closed-shell “core”, and the valence electrons, N = Nc + M . In this case, the
Hartree-Fock equations are solved for the core electrons, and then the Hartree-
Fock potential is kept constant and the orbitals for the valence electrons are
found in this “frozen core” potential.

For single-valence atoms, this procedure leads to an accuracy on the order
of 10%. To do better than this, one needs to consider perturbative corrections
corresponding to valence–core interactions:

δV =
∑
i<j

e2

rij
− UHF. (A.16)

The interaction δV is known as the residual Coulomb interaction. The correc-
tions to the wavefunctions and energies are known as the correlation corrections,
and are discussed in Sec. A.4.

For atoms with more than one valence electron, a single Slater-determinant
can be formed from the Hartree-Fock orbitals, however this typically does not

142



A.4. Correlation corrections B M Roberts

lead to an acceptable accuracy, especially for the more highly excited states.
For better accuracy, a linear combination of determinants is required. Note
that the Hartree-Fock model itself cannot predict the value of the expansion
coefficients, c in Eq. (A.3). A common method used in this case to determine the
valence wavefunctions (and the method used in this thesis) is the configuration
interaction method, discussed in Sec. A.7.

A.4 Correlation corrections

Correlation corrections are the deviation from the pure single-particle picture.
They correspond to the electron–electron interactions of the valence electrons
with the electrons in the core.2 In this section, we restrict the discussion to
atoms and ions with just one valence electron. A treatment of correlations in
atoms with more than one valence electron is discussed in Sec. A.7.

In this section, we use the notation where the indices labelled by letters from
the end of the alphabet (e.g. v and w) denote occupied valence states, letters
from the start of the alphabet (a, b, c) denote denote occupied states in the core,
and those from the middle of the alphabet (l,m, n) denote virtual states that
are either unoccupied valence states (states above the core) or states in the core.
Greek indices (α, β, γ) denote unoccupied core states (holes).

As mentioned above, the next step to improve the wavefunctions and en-
ergies after the Hartree-Fock procedure is to add perturbatively back the ex-
cluded electron–electron repulsion term, as in Eq. (A.16). As mentioned above,
for single-valence systems, we employ a so-called V N−1 potential, in which the
Hartree-Fock equations are solved for the N−1 electrons of the core. The wave-
function for the valence electron is then solved in this frozen core potential. In
this case, the correlation corrections are greatly simplified. To the first order in
perturbation theory, the correlation corrections to the (single-particle)3 energy
and wavefunction are given

δE(1)
v =

∑
a

〈ψv|
1

rva
|ψv〉 − 〈ψv|UHF|ψv〉 = 0, (A.17)

|δψ(1)
v 〉 =

∑
n

|ψn〉
∑
a〈ψn| 1

rva
|ψv〉

E
(0)
v − E(0)

n

−
∑
n

|ψn〉
〈ψn|UHF|ψv〉
E

(0)
v − E(0)

n

= 0, (A.18)

where the sum over a runs over all states in the core (note that there is an
implicit sum over a in UHF|ψv〉), and the sum over n runs over the complete set
of core, valence, and exited (virtual) states (including negative energy positron
states, and states in the continuum). Notice that the first term, 〈ψv| 1

rva
|ψv〉,

is given by the same diagrams in Fig. A.1, and therefore exactly cancels with
the 〈ψa|UHF|ψa〉 term. Therefore, there are no first-order corrections to the
energies. Of course, this is not a coincidence; in fact it is the definition of the
Hartee-Fock potential. Physically, this means that there are no corrections to
the Hartree-Fock potential that involve only single excitations (in the absence
of external fields).

2In some other places, the term “correlations” is defined as the difference between the
experimental and HF energies.

3Note that for the single-particle wavefunctions here, E = ε, and ψ = φ
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Figure A.2 Feynman-Goldstone diagrams for the second-order (in the residual Coulomb interaction) correla-
tion corrections to the single-electron wavefunction ψv. The indices m and n denote virtual excited states, and
α and β denote unoccupied core states (holes).

A.4.1 Second-order correlations

The lowest-order corrections are those from the second-order perturbation the-
ory. These corrections can be expressed in the form of four Goldstone diagrams,
which are presented in Fig. A.2. In Fig. A.3, I present the same diagrams using
a different notation.

The corrections to the energies can be computed directly; via a direct sum-
mation over states of the diagrams presented in Fig. A.2 (as in Ref. [419]).
In this thesis, however, we use a more numerically stable method developed
in Ref. [420]; the so-called correlation potential method. In the correlation
potential method, a non-local operator, Σ̂, is added to the single-electron HF
Hamiltonian Eq. (A.12). The wavefunctions for the valence electron are then
solved in this modified HF potential:(

ĥHF + Σ̂(εa)
)
φBO
a = εBO

a φBO
a . (A.19)

The wavefunction φBO is reffered to as a “Brueckner” orbital. The Brueckner
orbitals and their corresponding energies include the correlation effects. (Not
that, in general, the correlation potential operator, Σ is energy dependent.) This
method also allows one to include higher-order effects, including a summation
of a series of diagrams to all orders in perturbation theory.

The correlation potential, related to the correlation potential operator via
the formula

Σ̂φv =

∫
Σ(r1, r2, εv)φv(r1) d3r1, (A.20)
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can be expressed explicitly. For example, the potentials corresponding to the
four second-order diagrams in Fig. A.2, are:

ΣA.2(a)(r1, r2, εv) =

e4
∑
α,n,m

∫∫
d3r3 d3r4

φ†α(r4)φm(r4)φn(r2) φα(r3)φ†m(r3)φ†n(r1)

r24r13(εv − εn − εm + εα)
, (A.21)

ΣA.2(b)(r1, r2, εv) =

−e4
∑
α,n,m

∫∫
d3r3 d3r4

φm(r2)φ†α(r3)φn(r3) φ†m(r4)φα(r4)φ†n(r1)

r23r14(εv − εn + εα − εm)
,

(A.22)

ΣA.2(c)(r1, r2, εv) =

−e4
∑
α,n,m

∫∫
d3r3 d3r4

φ†β(r4)φn(r4)φ†α(r1) φβ(r3)φ†n(r3)φα(r2)

r23r14(εv + εα − εn + εβ)
, (A.23)

ΣA.2(d)(r1, r2, εv) =

e4
∑
α,n,m

∫∫
d3r3 d3r4

φ†β(r4)φn(r4)φ†α(r1) φβ(r2)φ†n(r3)φα(r3)

r14r23(εv + εα − εn + εβ)
.

(A.24)

The integrals over r−1
ij are performed by expanding over the spherical harmonics

and summing over the multipolarities, as usual.
The second-order correlation potential, which we denote as Σ(2), is the sum of

the four potentials above. In the next section we discuss the inclusion of higher-
order effects into the correlation potential, including an all-orders summation
of a dominating series of diagrams.

A.4.2 All-order correlation potential in the screened coulomb inter-

action

The second-order correlation method described above greatly increases the ac-
curacy of the energies and wavefunctions for single-valence systems, however,
it overestimates the corrections. Higher-order correlations must be taken into
account to improve the accuracy. This task, however, is not so simple; the
inclusion of third-order correlations actually worsens the agreement with exper-
iment for single-valence systems such as Cs [421]. Therefore, one requires an
all-order technique. For this, we use the correlation potential in the screened
Coulomb interaction (CPSCI) method as developed in Refs. [199, 219] (see also
Refs. [5, 243–245, 419, 420]). In general, when we refer to the correlation poten-
tial method, we mean the all-order CPSCI method as described here. Sometimes
it is also necessary to refer to just the second-order version, as described above.
When necessary, we distinguish between the two correlation potentials with the
notation Σ(2) and Σ(∞), respectively.

The CPSCI method allows the inclusion of three sets of dominating diagrams
to all-orders of perturbation theory:
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Figure A.3 Diagrams corresponding to those presented in Fig. A.2. The indices m and n denote virtual
excited states, and a and b denote occupied core states.

(i) the screening of the electron–electron interaction due to the polarisation
of the core electrons,

(ii) the electron–hole Coulomb interaction,

(iii) non-linear effects of the correlation potential (chaining of the self-energy).

The largest correction to the second-order correlation potential comes from the
screening of the electron–electron Coulomb interaction by the other core elec-
trons [245]. Examples of the screening diagrams are presented in Fig. A.4. The
electron–hole interaction also gives an important contribution, which is typically
around half the size of the screening correction [219]. An example diagram for
the electron–hole interaction correction is presented in Fig. A.5. The screen-
ing and electron–hole diagrams are included into the correlation potential. The
non-linear corrections are then included via iterations of the correlation poten-
tial within the HF equations. All other sets of diagrams are suppressed by a
small parameter, and can be safely neglected [219], especially for the s and p
states, which are typically of most interest.

Method for calculating the correlation potential In order to form the
all-order correlation potential, the Feynman diagram technique is used. The
reason for this is that it allows for a more convenient inclusion of higher-order
correlations; the drawback is that it requires a numerical integration over fre-
quencies.

In the Feynman technique, the second-order correlation corrections are ex-
pressed by the two diagrams presented in Fig. A.6. Then the second-order

correlation potential, Σ̂(2) = Σ̂
(2)
dir + Σ̂

(2)
exch, is expressed via the Hartree-Fock
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Figure A.4 Feynman-Goldstone diagrams for the lowest-order screening corrections to the second-order cor-
relation diagram presented in Fig. A.2(a). There are also corresponding screening corrections for the other three
diagrams in Fig. A.2. The indices l, m, and n denote virtual excited states, α and β denote unoccupied core
states (holes), and v is the valence electron for which the corrections are calculated.

v v

Figure A.5 Feynman-Goldstone diagram for the lowest-order electron–hole corrections to the second-order
correlation diagram presented in Fig. A.2(a). There are also corresponding electron–hole interaction corrections
for the other diagrams in Fig. A.2.

ε ε+ ω

(a)

ε

ω1 ω2

(b)

Figure A.6 Second-order direct (a) and exchange (b) correlation corrections in the Feynman diagram tech-
nique. The double line represents the Green’s function for the external electron. The wavy line is the residual
Coulomb interaction, and the loop represents polarisation of the core electrons. After integration over frequen-
cies (ω), diagram (a) transforms to the diagrams A.2(a) and A.2(c), and (b) transforms to the diagrams A.2(b)
and A.2(d) from Fig. A.2.
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Figure A.7 Polarisation operator for the atomic core.

Feynman Green’s function:

Σ̂
(2)
dir(ε, r1, r2) =

∑
ij

∫
dω

2π
G12(ε+ ω) Q̂1i Π̂ij(ω) Q̂j2, (A.25)

Σ̂
(2)
exch(ε, r1, r2) =∑

ij

∫∫
dω

2π

dω′

2π
Q̂1iG1j(ε+ ω)Gji(ε+ ω + ω′) Q̂j2Gi2(ε+ ω′), (A.26)

where Q12 = e2

r12
is the Coulomb interaction, G is the Green’s function, Π is

the polarisation operator, and the summation over i and j is the numerical
implementation of the integrals over ri,j . The Green’s function is expressed

G12(ε) =
∑
n

φn(r1)φ†n(r2)

ε− εn + iδ
+
∑
a

φa(r1)φ†a(r2)

ε− εa − iδ
; δ → 0, (A.27)

where n is a (virtual) state above the core, and a is an occupied core state. The
polarisation operator (Fig. A.7) is expressed

Π̂12(ω) =

∫
dω′

2π
G12(ω + ω′)G12(ω′)

=

N−1∑
a=1

φ†a(r1) [G12(εa + ω) +G12(εa − ω)]φa(r2). (A.28)

The electron–hole interaction perturbs the polarisation operator. This effect
(shown to lowest-order for one particular second-order diagram in Fig. A.5)
is essentially due to the deviation of the direct Hartree-Fock potential for the
excited core electron from that for the non-excited electron. It is calculated by
replacing the V̂ N−1 HF potential by the V̂ N−2 potential when calculating Π̂.
Since this calculation involves iterations of the modified HF equations as above,
the electron–hole interaction is included to all orders (once the convergence of
the HF equations has been realised). This amounts to replacing the polarisation
operator by the fully-chained operator, as shown in Fig. A.8.

To include the effect of the screening of the Coulomb interaction to all-
orders is slightly more involved. The chain of polarisation diagrams can be
obtained from the lowest-order diagram (Fig. A.7) by successive insertions of
extra electron–hole loops into the Coulomb lines, as shown in Fig. A.9. Before
the integration over frequencies, this series forms a geometrical progression

Π̂ + Π̂Q̂Π̂ + Π̂Q̂Π̂Q̂Π̂ + . . . ,
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= + + + . . .

Figure A.8 Diagram for the electron–hole correction to the polarisation operator, chained to all-orders by
iterations of the modified HF equations.

+ + + . . .

Figure A.9 Chain of all higher-order polarisation diagrams.

which can be summed analytically:

π̂(ω) = Π̂(ω)
[
1− Q̂Π̂(ω)

]−1

. (A.29)

Then, the screening of the Coulomb interaction is included to all-orders by
making the substitution Π̂ → π̂ in the direct part of the correlation operator
Eq. (A.25):

Σ̂dir(ε, r1, r2) =
∑
ij

∫
dω

2π
G12(ε+ ω) Q̂1i π̂ij(ω) Q̂j2. (A.30)

It is also possible to express the direct part of the correlation operator via
the screened Coulomb operator q̂(ω):

q̂(ω) = Q̂(ω)
[
1− Π̂(ω)Q̂

]−1

, (A.31)

which is found in the same way as Eq. (A.29). This equates to a redefinition
of the Coulomb line that includes screening to all-orders (and the electron–hole
interaction), as shown in Fig. A.10. The direct potential can then be expressed

Σ̂dir(ε, r1, r2) =
∑
ij

∫
dω

2π
G12(ε+ ω) Q̂1i Π̂ij(ω) q̂j2 (A.32)

(note that only one Coulomb operator has been replaced). With this definition,
one can also include screening into the exchange diagrams with the substitution
Q̂→ q̂ in Eq. (A.26):

Σ̂exch(ε, r1, r2) =∑
ij

∫∫
dω

2π

dω′

2π
q̂1iG1j(ε+ ω)Gji(ε+ ω + ω′) q̂j2Gi2(ε+ ω′), (A.33)

The total correlation potential operator (self-energy operator) that includes
an all-orders summation of the dominating screening and electron–hole interac-
tions is given by the equations (A.32) and (A.33). This is shown diagrammati-
cally in Fig. A.11. In order to compute the correlation potential, a complete set
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= + + + . . .

Figure A.10 Screening of the Coulomb interaction to all-orders (including the electron–hole interaction).

Σ =

ε ε+ ω

+

ε

ω1 ω2

Figure A.11 The correlation potential operator (electron self-energy operator) including screening and the
electron–hole interactions to all-orders.

of single-electron orbitals is required. One could construct the “complete” set
of single-electron orbitals using the Hartree-Fock orbitals, however, for conve-
nience we instead use the B-spline technique [206]. We find that the basis used
to construct to correlation potential can typically be saturated with the use of
between 40 and 70 B-splines of order 9 in a cavity of 40 aB .

Then, the accuracy of the calculations is further improved by including the
effects which are non-linear in the correlation potential. These effects are in-
cluded by chaining the correlation potential to all-orders, as in Fig. A.12, which
is achieved by adding the correlation potential to the Hartree-Fock potential,
and solving the resulting modified Hartree-Fock equations iteratively for the
valence states, as in Eq. (A.19). As for the case of the second-order potential,
the resulting orbitals are referred to as Brueckner orbitals, which now contain
these correlation effects to all-orders.

A.5 Coupled cluster method

An alternative approach to the CPSCI method described above that is very
common in the literature is the coupled-cluster method. This method is not used
directly in this thesis, however a brief outline is given here for completeness, and
for useful comparison. Here, I outline only the simplest version of the coupled-
cluster method; the linearised singles-doubles method. For a more detailed
review of all-order coupled-cluster methods, see, e.g., Ref. [421].

In the linearised singles-doubles method, the many-electron wave function

Σ + Σ Σ + Σ Σ Σ + . . .

Figure A.12 Chaining of the correlation potential operator (electron self-energy operator) to all-orders.
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of an atom is written as an expansion over terms containing single and double
excitations of core or valence electrons from the reference Hartree-Fock wave
function into basis states above the core, see, e.g., Ref. [422]. Here, we consider
for simplicity the case of a single-valence system, for which the wavefunction is
expressed as

|ψv〉 =

[
1 +

∑
ma

ρmaa
†
maa +

1

2

∑
mnab

ρmnaba
†
ma
†
nabaa

+
∑
m 6=v

ρmva
†
mav +

∑
mna

ρmnvaa
†
ma
†
naaav

]
|0HFv 〉, (A.34)

where |0HFv 〉 = a†v|0HF 〉 is the lowest order wavefunction, with |0HF 〉 the Hartree-
Fock wavefunction for the frozen core, and a† and a are the single-electron cre-
ation and annihilation operators, respectively (see, e.g., Ref. [423]). Here, the
sums over a and b run over all N−1 occupied core electrons, while the sums over
m and n run over all unoccupied virtual states outside the core. The factors ρ
are the expansion coefficients, and are found by solving the SD equations [422].
First, the SD equations

(εa − εm)ρma =
∑
bn

g̃mbanρnb +
∑
bnr

gmbnrρ̃nrab −
∑
bcn

gbcanρ̃mnbc,

(A.35)

(εa + εb − εm − εn)ρmnab = gmnab +
∑
cd

gcdabρmncd +
∑
rs

gmnrsρrsab

+
∑
r

gmnrbρra −
∑
c

gcnabρmc +
∑
rc

g̃cnrbρ̃mrac

+
∑
r

gmnraρrb −
∑
c

gcmbaρnc +
∑
rc

g̃cmraρ̃nrbc,

(A.36)

are solved self consistently for the core electrons to determine the core excitation
coefficients ρma and ρmnab. The iterative procedure needs a starting point,
which is

ρmnij =
gmnij

εi + εj − εm − εn
, ρma = 0.

The g terms in the above equations are the Coulomb integrals,

gmnij =

∫∫
φ(r1)mφ(r2)n

e2

r12
φ(r1)iφ(r3)j d3r1 d3r2,

and the tilde above g or ρ means antisymmetrisation, e.g., g̃mban = gmban −
gmbna. The correction to the core energy is given by

δEc =
1

2

∑
mnab

gabmnρ̃nmba, (A.37)

and is used to control the convergence of the self-consistent procedure.
In order to achieve high-accuracy for single-valence systems, some dominat-

ing triple excitations must be included, see, e.g., Ref. [424, 425].
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For systems with more than one valence electron, higher accuracy can be
achieved by combining the singles-doubles method with the configuration inter-
action method (which is discussed below) [426] (see also [427]). The coupled-
cluster equations allow for a highly accurate treatment of core–valence corre-
lations, while the configuration interaction technique allows for a much more
accurate treatment of valence–valence correlations. In order to achieve this,
some modifications of the singles-doubles equations are required; for example,
all terms that have only excitations of valence electrons must be removed, since
these are included in the configuration interaction calculations.

A.6 Interaction with external fields

A.6.1 Time-dependant Hartree-Fock method

In the presence of external fields the core becomes polarised, and a modification
of the Hartree-Fock potential is required. We take this core polarisation into
account using the time-dependent Hartree-Fock (TDHF) method as in Ref. [243]
(see also Refs. [38, 244]). This is equivalent to the random phase approximation
with exchange (RPA), as in Ref. [428].

Consider the (single-particle) interaction Hamiltonian due to an applied
time-dependent external field (e.g., the electric field from a laser):

ĥf = f̂ e−iωt + f̂† eiωt. (A.38)

The total interaction Hamiltonian is the sum of each single-electron Hamiltonian
for each electron in the atom Ĥf =

∑
i ĥfi. Within the framework of the TDHF

method, the Hartree-Fock potential is rewritten UHF → UHF + δVf , where δVf
is the correction to the core potential arising from the perturbing field. Then,
the all single-particle orbitals for the core electrons are expressed as

φ′a = φa + ηa e−iωt + ζa eiωt, (A.39)

where φ is the unperturbed orbital, η and ζ are corrections due to the external
field, and ω is the frequency of the external field. The corrections to the core
potential (δV ) are found by solving the following system of TDHF equations
self-consistently for all of the core orbitals:

(ĥHF − εa − ω)ηa = −(ĥf + δVf − δεa)φa

(ĥHF − εa + ω)ζa = −(ĥ†f + δV †f − δεa)φa,
(A.40)

where the correction δV is calculated from

δVfφa = UHF(φ′1, . . . , φ
′
N )φa − UHF(φ1, . . . , φN )φa

=

Nc∑
n 6=a

∫ [
ζ†n(r′)φn(r′) + φ†n(r′)ηn(r′)

|r − r′| φa(r)

− ζ†n(r′)φn(r) + φ†n(r′)ηn(r)

|r − r′| φa(r′)

]
d3r′. (A.41)

In deriving Eq. (A.40), we have kept terms only to first order in the perturbation,

and the energy shift is given by δεa = 〈φa|ĥ+ δV |φa〉. This iterative procedure
requires an initial value for δV to begin; it suffices to start with δV = 0.
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A.6.2 Matrix elements with core polarisation

We wish to determine the effect of this core polarisation on the matrix elements
of transitions between external electrons. For now, we will consider the case of
a single valence system, for simplicity. Consider now the valence wave function
for a state v using the regular time-dependent perturbation theory,

ψ′v = ψv +
Mwv

Ev − Ew + ω
ψw e−iωt, (A.42)

where Mwv is the transition matrix element (from initial state v to final state
w), and we have kept only the resonant term ω ≈ Ew − Ev. Comparing this
equation with the valence-wavefunction equivalents of Eqs. (A.39) and (A.40):

ψ′ = ψ +X e−iωt + Y eiωt,

(ĤHF − E − ω)X = −(ĥf + δVf − δE)ψ, (A.43)

(ĤHF − E + ω)Y = −(ĥ†f + δV †f − δE)ψ,

which together imply

〈ψw|ψ′v〉 = 〈ψw|Xv〉 e−iωt

=
〈ψw|ĥf + δVf |ψv〉
Ev − Ew + ω

e−iωt, (A.44)

it is clear that
Mwv = 〈ψw|ĥf + δVf |ψv〉. (A.45)

Then, for many-electron wavefunctions, the electron transition matrix elements
MBA (from initial state A to final state B) induced by the interaction ĥ are
given by the sum of single-electron contributions (see, e.g., Ref. [423]). Us-
ing this method, once convergence of equations (A.40) and (A.41) has been
realised, core polarisation is included to all orders in perturbation theory (see,
e.g., Refs. [38, 244]). The first-order core-polarisation correction diagrams are
shown in Fig. A.13. Note that to include just the first-order core polarisation
(as in Fig. A.13) corresponds to solving the equations (A.40) and (A.41) once,
without further iterations. Further iterations of the equations give an important
contribution, called relaxation, and in general can not be neglected.

This means that core-polarisation effects can be taken into account with
a redefinition of the external field operators. We adopt the notation that a
tilde over an operator means that operator has been redefined to include the
core-polarisation correction:

h̃ ≡ ĥ+ δV. (A.46)

The TDHF corrections to matrix elements are extremely important. They
often give corrections on the order of 10% or more. In fact, sometimes, without
core polarisation the matrix element is zero and the entire amplitude is due
to this correction. Note also, that including the core polarisation in this self-
consistent way makes the matrix elements self-consistent in the same way that
including the Hartree-Fock potential in the way described above makes the
Hamiltonian and energies self consistent. For example, without including core
polarisation, it is seen that the matrix elements of the E1 interaction are not
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v w v w

(a) Direct
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w
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(b) Exchange

Figure A.13 Feynman-Goldstone diagrams for the lowest-order direct and exchange contributions to the core
polarisation. The wavy line denotes the Coulomb interaction, and the dotted line denotes the interaction with
the external field.

gauge independent; in the TDHF method this is corrected, see, e.g., Refs. [38,
244, 429]).

Note that we can easily include correlation corrections into the matrix ele-
ments by using Brueckner orbitals in place of the Hartree-Fock orbitals for the
valence electrons in the above equations. The corrections to the Brueckner or-
bitals are found by including the correlation potential into the TDHF equations
for the valence electrons.

A.7 Configuration interaction with many-body perturba-
tion theory

In order to calculate the wavefunctions of systems with two or more valence
electrons, we use a method that is based on the configuration interaction (CI)
method. We make use of what is called the configuration Interaction with many-
body perturbation theory (CI+MBPT) method, which was developed in Ref. [225]
(also see Ref. [430]). The CI method very accurately takes into account the
valence–valence electron correlations, while the MBPT very accurately treats
the core–valence correlations; the combined CI+MBPT method gives the best
of both techniques.

Typically, we use what we call the “V N−M potential”, as developed in
Ref. [289]. In this case, the atomic electrons are broken into the Nc(= N −M)
core and M valence electrons. The Hartree-Fock equations are then solved for
the Nc core orbitals, and the orbitals of the valence electrons are found in this
frozen potential (as described below). Note that in some cases, particularly
when there are many valence electrons, this method is impractical, and other
approaches are needed. We therefore sometimes deviate from this method; when
this happens it will be explained in the text.

The effective CI+MBPT Hamiltonian for the system of M valence electrons
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has the form:
Ĥeff =

∑
i

ĥ1(ri) +
∑
i<j

ĥ2(ri, rj), (A.47)

where ĥ1 is the single-electron part of the Hamiltonian,

ĥ1 = cα · p̂+ c2(β − 1)− V nuc. + UHF + Σ̂1, (A.48)

and ĥ2 is the two-electron part,

ĥ2(ri, rj) =
1

|ri − rj |
+ Σ̂2(ri, rj), (A.49)

and the sum runs over the M valence electrons. In the above equations UHF is
the RHF potential created by the N −M electrons of the closed-shell core. The
additional Σ̂ terms are the correlation potentials, without which these equations
would correspond to the conventional CI method. The correlation potential
is used to take into account core-valence correlations (see Refs. [225, 430] for
details). The single electron correlation potential, Σ̂1, represents the interaction
of a single valence electron with the atomic core, and is the same potential
described as described in Sec. A.4.2 (sometimes we use the all-order potential,
and sometimes only to second order). The two-electron operator, Σ̂2, represents
the screening of the valence–valence Coulomb interaction by the core electrons.

Note that the method described here is not exhaustive; for certain systems
and in certain cases deviations from this method are required. Where we deviate
from this method will be described in the text.

A.8 Mixed states method for summation over intermedi-
ate states

Consider, for example, the first-order correction to an electric dipole transition
induced by the interaction with some external field described by the Hamiltonian
ĥ:

d′ =
∑
n

N∑
i,j

[
〈Ψb|d̂i|Ψn〉〈Ψn|ĥj |Ψa〉

Ea − En
+
〈Ψb|ĥj |Ψn〉〈Ψn|d̂i|Ψa〉

Eb − En

]
, (A.50)

where the sum n runs over all unoccupied states, and the sums over i and j
run over all atomic electrons. In order to perform the calculations, the above
“exact” formula is replaced by one built from approximate wavefunctions in the
single-particle picture:

d′ =
∑
n

valence∑
i,j

[
〈ψb|d̃i|ψn〉〈ψn|h̃j |ψa〉

Ea − En
+
〈ψb|h̃j |ψn〉〈ψn|d̃i|ψa〉

Eb − En

]
. (A.51)

This equation looks similar to Eq. (A.50), but has some important differences.
Firstly, the wavefunctions and energies are replaced with their approximate
counterparts (these matrix elements are determined in terms of matrix elements
of single-particle orbitals as above, and the tilde over the operators means that
core-polarisation is included). The sums over i and j now extend only over the
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valence electrons (the core contribution is included in the core-polarisation using
the TDHF method as described above). Also, the sum over n now extends over
all states, including the occupied core states. Extending the summation to the
core states corresponds to inclusion of highly excited autoionising states.

One can then use Eq. (A.51) to perform calculations by a direct determi-
nation and summation of matrix elements and energy denominators; we refer
to this apprach as the direct summation, or sum-over-states approach. In our
calculation, however, we use a numerically more stable approach based on the
Dalgarno-Lewis exact summation method [226], which we refer to as the mixed
states (or sometimes, the solving-equations) method.

Consider the first-order correction to the wavefunction |ψa〉 due to the per-

turbation ĥ:

|δψa〉 =
∑
n,j

|n〉〈n|ĥj |ψa〉
Ea − En

, (A.52)

where |n〉 and |ψa〉 are eigenfunctions of the unperturbed Hamiltonian H0, with
eigenvalues En and Ea, respectively. Note that this correction satisfies the
differential equation

(Ĥ0 − Ea)|δψa〉 = −
∑
j

ĥj |ψa〉, (A.53)

which can be solved numerically. In general, the interaction is time dependent,
so time-dependent perturbation theory must be used. In fact, the relevant
equations which must be solved are just the TDHF equations (A.40), though

now there are two external fields, instead of one (e.g. d̂ and ĥ above).

The wavefunction in the external ĥ and E1 fields is expressed

ψ = ψ0 + δψ +Xe−iωt + Y eiωt + δXe−iωt + δY eiωt, (A.54)

where ψ0 is the unperturbed state, δψ is the correction due to the ĥ interaction
acting alone, X and Y are corrections due to the E1 field acting alone, δX and
δY are corrections due to both fields acting simultaneously, and ω = Ea − Eb
is the frequency of the transition. The corrections to the wavefunctions and
to the core HF potential are found by solving the relevant TDHF equations
self-consitantly for the core:

(Ĥ0 − Ec − ω)Xc = −(d̂E1 + δV̂E1)ψ0c, (A.55)

(Ĥ0 − Ec + ω)Yc = −(d̂†E1 + δV̂ †E1)ψ0c, (A.56)

(Ĥ0 − Ec)δψc = −(ĥ+ δV̂h)ψ0c, (A.57)

(Ĥ0 − Ec − ω)δXc = −δV̂E1δψc − δV̂hXc − δV̂hE1ψ0c + δEcψ0c, (A.58)

(Ĥ0 − Ec + ω)δYc = −δV̂ †E1δψc − δV̂hYc − δV̂ †hE1ψ0c + δEcψ0c. (A.59)

Here, the index c denotes core states, and δV̂h and δV̂E1 are corrections to the
core potential arising from the ĥ and E1 interactions, respectively, and δV̂hE1 is
the correction to the core potential arising from the simultaneous perturbation
of the ĥ field and the electric field of the laser light, and δEc is the corresponding
correction to the core energy, given by

δEc = 〈ψ0c|δV̂E1|δψc〉+ 〈ψ0c|δV̂h|Xc〉+ 〈ψ0c|δV̂hE1|ψ0c〉. (A.60)
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In the mixed-states method, the PNC amplitude between valence states a
and b is then given by

d′ = 〈ψb|
∑
i

d̃i|δψa〉+ 〈δψb|
∑
i

d̃i|ψa〉+ 〈ψb|
∑
i

δV̂hE1i|ψa〉, (A.61)

The last term in the above equation represents the double core polarisation
contribution, which is due to the simultaneous action of the two external fields.
This term gives an important correction that is often not included in sum-over-
states calculations. This effect is the subject of Ch. 4.

Note that no summation has been performed, and only calculations of the
initial and final state wavefunctions and energies are needed. Alternatively, in
the direct summation method, a complete set of intermediate wave functions
and energies must be calculated. A comparison of calculations performed using
the direct-summation and mixed-states approaches is a very good way of testing
the completeness of the basis, since the two approaches (neglecting double core
polarisation) must be identical if the basis is complete and fully self-consistent.
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APPENDIX B:
Formulas

B.1 Parity nonconservation amplitudes

The Hamiltonian describing the parity violating electron–nucleus interaction can
be expressed as the sum of the nuclear-spin-independent (SI) and nuclear-spin-
dependent (SD) parts (using atomic units, ~ = |e| = me = 1, c = 1/α ≈ 137):

ĥPNC = ĥSI + ĥSD =
GF√

2

(
−QW

2
γ5 +

α · I
I

κ
)
ρ(r), (B.1)

where GF ≈ 2.2225 × 10−14 a.u. is the Fermi weak constant, QW and κ are
dimensionless constants quantifying the strength of the SI and SD PNC inter-
actions, respectively, α = γ0γ and γ5 = iγ0γ1γ2γ3 are Dirac matrices, I is the
nuclear spin and ρ(r) is the normalised nuclear density,

∫
ρd3r = 1. Eq. (B.1)

contains only single-particle operators, so it transforms to the many-body op-
erator in the trivial way: HPNC(r1, ..., rN ) =

∑
i hPNC(ri).

The amplitude of a parity-violating E1 transition between two states of the
same parity can be expressed via the sum over all opposite parity states n:

Ea→b
PNC =

∑
n

[
〈b|D̂E1|n〉〈n|ĤPNC|a〉

Ea − En
〈b|ĤPNC|n〉〈n|D̂E1|a〉

Eb − En

]
, (B.2)

where D̂ = −e∑i ri is the operator of the electric dipole (E1) interaction.
In the calculations, Eq. (B.2) is determined in terms of single-particle orbitals
and energies, as discussed in Ch. A. Note that due to the vector nature of the
E1 transition, the EPNC transition is also a vector quantity; in the tables we
typically present the z-component, defined below.

Consider a transition between states of definite F , J , and M ; where F =
I +J is the total angular momentum of the atom, and M is its projection onto
the axis of quantisation. With use of the Wigner-Eckart theorem, this amplitude
can be expressed as:

EPNC = (−1)Fb−Mb

(
Fb 1 Fa
−Mb q Ma

)
〈JbFb||dPNC||JaFa〉, (B.3)

where 〈f ||h||i〉 is called a “reduced matrix element”, and (· · · ) is a Wigner
3j symbol (see, e.g., Ref. [287]), and q = Mb − Ma. Crucially, the reduced
matrix elements are independent of projections of the angular momenta. Unless
explicitly stated, we display z-components in all tables, and take M = Fz =
min(Fa, Fb). The reduced matrix elements obey the symmetry rule

〈JaFa||dPNC||JbFb〉 = (−1)Fb−Fa〈JbFb||dPNC||JaFa〉∗, (B.4)

where ∗ means complex conjugation and results in a change of sign for the PNC
amplitudes.
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B.1.1 Spin-dependent PNC

For the SD-PNC amplitude, the reduced matrix element is given by

〈JbFb||dSD||JaFa〉 =
GF√

2
κ
√

(I + 1)(2I + 1)(2Fb + 1)(2Fa + 1)/I

∑
n

[
(−1)Jb−Ja

{
Jn Ja 1
I I Fa

}{
Jn Jb 1
Fb Fa I

} 〈Jb||d̂E1||Jn〉〈Jn||αρ||Ja〉
Ea − En

+

(−1)Fb−Fa
{
Jn Jb 1
I I Fb

}{
Jn Ja 1
Fa Fb I

} 〈Jb||αρ||Jn〉〈Jn||d̂E1||Ja〉
Eb − En

]
, (B.5)

where {· · · } is a Wigner 6j symbol (see, e.g., Ref. [287]).
For single-particle states, the reduced matrix elements of the SD-PNC inter-

action take the form

〈ja||αρ||jb〉 = iR1SDC1SD + iR2SDC2SD, (B.6)

where

R1SD = −α
∫
ρ(r) ga(r) fb(r) dr,

R2SD = −α
∫
ρ(r) fa(r) gb(r) dr,

(B.7)

are the radial integrals with ρ(r) the normalised (Fermi-type) nuclear density,
and C1,2SD are the angular coefficients:

C1SD = (−1)ja+lb+1/2
√

6(2ja + 1)(2jb + 1)

{
1/2 ja lb
jb 1/2 1

}
,

C2SD = (−1)ja+la+3/2
√

6(2ja + 1)(2jb + 1)

{
1/2 ja la
jb 1/2 1

}
.

(B.8)

For many-particle states, the reduced matrix elements that appear in Eq. (B.5)
are then given by sums of single-particle integrals (B.6).

Also for single-particle states, the reduced matrix elements of the electric
dipole (E1) operator take the form

〈ja||d̂E1||jb〉 = RE1(−1)ja+1/2
√

(2ja + 1)(2jb + 1)

(
ja jb 1
−1/2 1/2 0

)
, (B.9)

where the radial integral is

RE1 = −e
∫ (

fa(r)fb(r) + α2ga(r)gb(r)
)

dr. (B.10)
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B.1.2 Spin-independent PNC

For the (QW -induced) SI-PNC amplitude, the reduced matrix element is

〈JbFb||dSI||JaFa〉

= i
GF

2
√

2
(−QW )(−1)I+Fa+Jb+1

√
(2Fb + 1)(2Fa + 1)

{
Ja Jb 1
Fb Fa I

}
×
∑
n

[(
Ja 0 Ja
−m 0 m

) 〈Jb||d̂E1||Jn〉〈Jn||γ5ρ||Ja〉
Ea − En

+

(
Jb 0 Jb
−m 0 m

) 〈Jb||γ5ρ||Jn〉〈Jn||d̂E1||Ja〉
Eb − En

]
, (B.11)

with m = min(Ja, Jb).
The single-particle reduced matrix element of the SI-PNC interaction is de-

fined:
〈ja||γ5ρ||jb〉 = iRSICSI, (B.12)

where

RSI = −α
∫
ρ(r) [fa(r) gb(r)− ga(r) fb(r)] dr (B.13)

is the single-electron radial integral, and CSI =

(
Ja 0 Ja
−m 0 m

)−1

=
√

2Ja + 1 is

the angular coefficient (note that the coefficient CSI and the 3j symbol in (B.11)
cancel). The γ5ρ(r) operator is a scalar operator; the reduced matrix element
of a scalar operator is just the matrix element divided by the 3j symbol, so the
3j symbols always cancel. We do this purely for convenience in the calculations.

B.1.3 F -independent form of spin-independent amplitude

When the spin-dependent part does not contribute to the PNC amplitude, it is
usually more convenient to express the PNC amplitudes in a form completely
independent of F . The electron (F -independent) part of the SI-PNC amplitude
[i.e. with |a〉 = |Ja, la,ma〉 in (B.2)] is given by the formula

EPNC =
GF

2
√

2
(−QW )

∑
n

(−1)Jb+Jn−2m

×
[(

Jb 1 Jn
−m 0 m

)(
Jn 0 Ja
−m 0 m

) 〈Jb||d̂E1||Jn〉〈Jn||γ5ρ||Ja〉
Ea − En

+

(
Jb 0 Jn
−m 0 m

)(
Jn 1 Ja
−m 0 m

) 〈Jb||γ5ρ||Jn〉〈Jn||d̂E1||Ja〉
Eb − En

]
,

(B.14)

where for the z component we take m = min(Ja, Jb).
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B.2 Angular decomposition for the atomic kernel

The atomic structure coefficient relevant to the process of atomic ionisation by
scattering of dark matter particles, term the “atomic kernel”, is defined

Knκ(∆E, q) =
∑
κ′

∑
m,m′

∣∣〈εκ′m′| eiq·r|nκm〉∣∣2 , (B.15)

where |εκ′m′〉 is an atomic state in the continuum with energy ε = p2/2me,
the state |nκm〉 is a bound atomic state, and q is the momentum transfer; see
Ch. 7. Here, m is the projection of j onto the axis of quantisation. Note that
this matrix element is relevant to the case of an electron vector interaction (for a
heavy mediator). We consider the scalar, pseudoscalar, and pseudovector cases
below; only minor modifications are required.

To evaluate the sum of matrix elements in Eq. (B.15), we first write the
exponential function in terms of the irreducible (spherical) tensor operators,

eiq·r =

∞∑
L=0

L∑
M=−L

TLM ,

where
TLM = 4π(i)LjL(qr)YLM (θr, φr)Y

∗
LM (θq, φq), (B.16)

with YLM the spherical harmonics, and jL the spherical Bessel function. Then,
using the standard angular momentum summation rules (see, e.g., [287]), we
express Eq. (B.15) as

Knκ(∆E, q) =
∑
κ′

∑
m,m′

∑
L,M

|〈εκ′m′|TLM |nκm〉|2

=
∑
κ′

∑
L

|〈εκ′||TL||nκ〉|2 x(n, j), (B.17)

where x(n, j) is the fractional occupation number for a given shell (for the shells
of interest here x = 1, however, x < 1 for open shells). The factor 〈pκ′||TL||nκ〉
is known as the reduced matrix element, and is defined via the Wigner-Eckart
theorem:

〈εκ′m′|TLM |nκm〉 ≡ (−1)j
′−m′

(
j′ L j
−m′ M m

)
〈εκ′||TL||nκ〉, (B.18)

where

(
j′ L j
−m′ M m

)
is a 3j symbol. Importantly, the reduced matrix ele-

ments are independent of the quantum numbers m and m′, as well as the index
M .

Therefore, the atomic kernel is reduced to a summation over reduced matrix
elements, which are found from Eq. (B.18) with, e.g., M = 0 and m = m′ = 1/2:

|〈εκ′||TL||nκ〉|2 =

(
j′ L j
− 1

2 0 1
2

)−2 ∣∣〈εκ′ 12 |TL0|nκ 1
2 〉
∣∣2

= CLκκ′
(
R2
f + 2α2RfRg + α4R2

g

)
, (B.19)
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where Rf and Rg are the radial integrals,

Rf =

∫
fεκ′fnκjL(qr) dr (B.20)

Rg =

∫
gεκ′gnκjL(qr) dr, (B.21)

and the angular coefficient is

CLκκ′ =
1

4
(−1)j+j

′−l−l′(2L+ 1)

(
l′ l L
0 0 0

)2(
j′ L j
− 1

2 0 1
2

)−2

×
[

(−1)j+j
′−l−l′(2j + 1)(2j′ + 1)

(
l′ l L
0 0 0

)2

+ 8
√
l′(l′ + 1)l(l + 1)

(
l′ l L
0 0 0

)(
l′ l L
−1 1 0

)

− 4(κ′ + 1)(κ+ 1)

(
l′ l L
−1 1 0

)2
]
. (B.22)

For s1/2 and p1/2 states, this reduces simply to C = 2 (with L = 0 for κ =
κ′ = ±1, and L = 1 for κ = −κ′ = ±1). Note that, since the reduced matrix
elements do not depend on M , m, or m′, we can choose any values for these
indices that leave the 3j symbol in (B.18) nonzero, however the minimal values
are typically the simplest to compute.

Similarly, if instead we consider a scalar, pseudoscalar, or pseudovector elec-
tron coupling, the relevant electron operator is replaced with TLMγ

0, TLMγ
0γ5,

or TLMγ5, respectively. Then the atomic structure factors can be expressed as∣∣〈εκ′||TLγ0||nκ〉
∣∣2 = CLκκ′

(
R2
f − 2α2RfRg + α4R2

g

)
, (B.23)∣∣〈εκ′||TLγ0γ5||nκ〉

∣∣2 = DL
κκ′α

2
(
R2
fg + 2RfgRgf +R2

gf

)
, (B.24)

|〈εκ′||TLγ5||nκ〉|2 = DL
κκ′α

2
(
R2
fg − 2RfgRgf +R2

gf

)
, (B.25)

where the radial integrals are

Rfg =

∫
fεκ′gnκjL(qr) dr (B.26)

Rgf =

∫
gεκ′fnκjL(qr) dr. (B.27)

The angular coefficient D is related to C via the transformation κ → κ̃ = −κ,
with l → l̃ = |κ̃+ 1/2| − 1/2 (κ′ and l′ remain unchanged). For s1/2 and p1/2

states we also have D = 2 (with L = 0 for κ = −κ′ = ±1, and L = 1 for
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κ = κ′ = ±1). The full formula for D is given

DL
κκ′ =

1

4
(2L+ 1)

(
l′ l̃ L
0 0 0

)2(
j′ L j
− 1

2 0 1
2

)−2

×
[
− (2j + 1)(2j′ + 1)

(
l′ l̃ L
0 0 0

)2

− 4(i)j+j
′−l−l′+1

√
(2j + 1)(2j′ + 1)(κ− 1)(κ′ + 1)

(
l′ l̃ L
0 0 0

)(
l′ l̃ L
−1 1 0

)

+ 4(−1)j+j
′−l−l′(κ′ + 1)(κ− 1)

(
l′ l̃ L
−1 1 0

)2
]
. (B.28)
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[100] M. Nuñez Portela et al., Appl. Phys. B 114, 173 (2013).

[101] V. A. Dzuba, V. V. Flambaum, and B. M. Roberts, Phys. Rev. A 86, 062512
(2012).

[102] N. N. Dutta and S. Majumder, Phys. Rev. A 90, 012522 (2014).

[103] B. M. Roberts, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 87, 054502
(2013).

[104] B. M. Roberts, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 88, 042507

172

http://dx.doi.org/10.1103/PhysRevLett.94.213002
http://dx.doi.org/10.1103/PhysRevLett.94.213002
http://dx.doi.org/10.1016/0375-9601(84)90122-1
http://dx.doi.org/10.1016/0375-9601(84)90122-1
http://dx.doi.org/10.1088/0031-8949/36/1/010
http://dx.doi.org/10.1088/0031-8949/36/1/010
http://dx.doi.org/10.1103/PhysRevA.37.1395
http://dx.doi.org/10.1103/PhysRevA.37.1395
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://prd.aps.org/abstract/PRD/v46/i1/p381_1
http://dx.doi.org/10.1103/PhysRevD.65.073026
http://link.aps.org/doi/10.1103/PhysRevLett.65.2963
http://dx.doi.org/10.1103/PhysRevLett.111.141803
http://pra.aps.org/abstract/PRA/v51/i5/p3454_1
http://pra.aps.org/abstract/PRA/v51/i5/p3454_1
http://dx.doi.org/10.1103/PhysRevA.62.022112
http://dx.doi.org/ 10.1103/PhysRevA.75.033418
http://dx.doi.org/ 10.1103/PhysRevA.75.033418
http://dx.doi.org/10.1063/1.3700615
http://dx.doi.org/10.1063/1.4802385
http://dx.doi.org/10.1007/s10751-013-0797-6
http://dx.doi.org/10.1088/1748-0221/9/10/P10013
http://dx.doi.org/10.1103/PhysRevA.81.032114
http://dx.doi.org/10.1103/PhysRevA.84.023404
http://dx.doi.org/10.1103/PhysRevA.84.023404
http://dx.doi.org/10.1023/A:1012605414957
http://dx.doi.org/10.1023/A:1012605414957
http://dx.doi.org/10.1103/PhysRevLett.74.4165
http://dx.doi.org/10.1103/PhysRevA.56.3453
http://dx.doi.org/10.1103/PhysRevA.56.3453
http://arxiv.org/abs/1412.1245
http://dx.doi.org/10.1103/PhysRevA.81.052515
http://dx.doi.org/10.1103/PhysRevLett.70.2383
http://dx.doi.org/10.1103/PhysRevA.63.062101
http://dx.doi.org/10.1103/PhysRevA.63.062101
http://dx.doi.org/ 10.1103/PhysRevA.78.050501
http://dx.doi.org/ 10.1103/PhysRevA.79.062505
http://dx.doi.org/ 10.1103/PhysRevA.79.062505
http://dx.doi.org/ 10.1103/PhysRevA.88.012515
http://dx.doi.org/10.1103/PhysRevA.82.010501
http://dx.doi.org/10.1139/P10-051
http://dx.doi.org/10.1007/s10751-013-0774-0
http://dx.doi.org/10.1007/s00340-013-5603-2
http://dx.doi.org/10.1103/PhysRevA.86.062512
http://dx.doi.org/10.1103/PhysRevA.86.062512
http://dx.doi.org/10.1103/PhysRevA.90.012522
http://dx.doi.org/10.1103/PhysRevA.87.054502
http://dx.doi.org/10.1103/PhysRevA.87.054502
http://dx.doi.org/10.1103/PhysRevA.88.042507
http://dx.doi.org/10.1103/PhysRevA.88.042507


B M Roberts

(2013).

[105] L. Bougas, G. E. Katsoprinakis, W. von Klitzing, J. Sapirstein, and T. P. Rak-
itzis, Phys. Rev. Lett. 108, 210801 (2012).

[106] D. Sofikitis, L. Bougas, G. E. Katsoprinakis, A. K. Spiliotis, B. Loppinet, and
T. P. Rakitzis, Nature 514, 76 (2014).

[107] O. P. Sushkov, V. V. Flambaum, and I. B. Khriplovich, Sov. Phys. JETP 60,
873 (1984).

[108] V. V. Flambaum and I. B. Khriplovich, Phys. Lett. A 110, 121 (1985).

[109] I. B. Khriplovich, Phys. Scr. T112, 52 (2004).

[110] W. C. Haxton, C.-P. Liu, and M. J. Ramsey-Musolf, Phys. Rev. C 65, 045502
(2002).

[111] A. Y. Kraftmakher, Phys. Lett. A 132, 167 (1988).

[112] W. R. Johnson, M. S. Safronova, and U. I. Safronova, Phys. Rev. A 67, 062106
(2003).

[113] W. C. Haxton, C.-P. Liu, and M. J. Ramsey-Musolf, Phys. Rev. Lett. 86, 5247
(2001).

[114] M. G. Kozlov, Phys. Lett. A 130, 426 (1988).

[115] V. F. Dmitriev and V. B. Telitsin, Nucl. Phys. A 613, 237 (1997).

[116] V. F. Dmitriev and V. B. Telitsin, Nucl. Phys. A 674, 168 (2000).

[117] W. C. Haxton and B. R. Holstein, Prog. Part. Nucl. Phys. 71, 185 (2013).

[118] I. B. Khriplovich, Phys. Lett. A 197, 316 (1995).

[119] V. V. Flambaum, Phys. Rev. A 60, 2611 (1999).

[120] V. A. Dzuba, V. V. Flambaum, and J. S. M. Ginges, Phys. Rev. A 61, 062509
(2000).

[121] L. N. Labzowsky, Sov. Phys. JETP 48, 434 (1978).

[122] M. G. Kozlov and L. N. Labzowsky, J. Phys. B 28, 1933 (1995).

[123] B. M. Roberts, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 89, 042509
(2014).

[124] S. B. Cahn, J. Ammon, E. Kirilov, Y. V. Gurevich, D. Murphree, R. Paolino,
D. A. Rahmlow, M. G. Kozlov, and D. DeMille, Phys. Rev. Lett. 112, 163002
(2014).

[125] T. A. Isaev, S. Hoekstra, and R. Berger, Phys. Rev. A 82, 052521 (2010).

[126] A. Borschevsky, M. Ilias, V. A. Dzuba, K. Beloy, V. V. Flambaum, and P. Schw-
erdtfeger, Phys. Rev. A 86, 050501 (2012).

[127] M. K. Nayak and B. P. Das, Phys. Rev. A 79, 060502 (2009).

[128] D. DeMille, S. B. Cahn, D. Murphree, D. A. Rahmlow, and M. G. Kozlov, Phys.
Rev. Lett. 100, 023003 (2008).

[129] Y. Y. Dmitriev, Y. G. Khait, M. G. Kozlov, L. N. Labzowsky, A. O.
Mitrushenkov, A. V. Shtoff, and A. V. Titov, Phys. Lett. A 167, 280 (1992).

[130] L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, New J. Phys. 11, 055049 (2009).

[131] E. S. Shuman, J. F. Barry, and D. DeMille, Nature 467, 820 (2010).

[132] J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille,
Nature 512, 286 (2014).

[133] M. Zeppenfeld et al., Nature 491, 570 (2012).

[134] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Phys. Rev. Lett.
13, 138 (1964).

[135] M. Pospelov and A. Ritz, Ann. Phys. (N. Y). 318, 119 (2005).

[136] J. Engel, M. J. Ramsey-Musolf, and U. van Kolck, Prog. Part. Nucl. Phys. 71,
21 (2013).

[137] T. E. Chupp and M. J. Ramsey-Musolf, arXiv:1407.1064.

[138] P. G. H. Sandars, Phys. Lett. 14, 194 (1965).

173

http://dx.doi.org/10.1103/PhysRevA.88.042507
http://dx.doi.org/10.1103/PhysRevA.88.042507
http://dx.doi.org/10.1103/PhysRevLett.108.210801
http://dx.doi.org/ 10.1038/nature13680
http://www.jetp.ac.ru/cgi-bin/dn/e_060_05_0873.pdf
http://www.jetp.ac.ru/cgi-bin/dn/e_060_05_0873.pdf
http://dx.doi.org/10.1016/0375-9601(85)90756-X
http://dx.doi.org/10.1238/Physica.Topical.112a00052
http://dx.doi.org/10.1103/PhysRevC.65.045502
http://dx.doi.org/10.1103/PhysRevC.65.045502
http://dx.doi.org/10.1016/0375-9601(88)90276-9
http://dx.doi.org/10.1103/PhysRevA.67.062106
http://dx.doi.org/10.1103/PhysRevA.67.062106
http://dx.doi.org/10.1103/PhysRevLett.86.5247
http://dx.doi.org/10.1103/PhysRevLett.86.5247
http://dx.doi.org/10.1016/0375-9601(88)90702-5
http://dx.doi.org/10.1016/S0375-9474(96)00440-X
http://dx.doi.org/10.1016/S0375-9474(00)00158-5
http://dx.doi.org/10.1016/j.ppnp.2013.03.009
http://dx.doi.org/10.1016/S0375-9601(05)80010-6
http://link.aps.org/doi/10.1103/PhysRevA.60.R2611
http://dx.doi.org/10.1103/PhysRevA.61.062509
http://dx.doi.org/10.1103/PhysRevA.61.062509
http://www.jetp.ac.ru/cgi-bin/dn/e_048_03_0434.pdf
http://dx.doi.org/10.1088/0953-4075/28/10/008
http://dx.doi.org/10.1103/PhysRevA.89.042509
http://dx.doi.org/10.1103/PhysRevA.89.042509
http://dx.doi.org/ 10.1103/PhysRevLett.112.163002
http://dx.doi.org/ 10.1103/PhysRevLett.112.163002
http://dx.doi.org/10.1103/PhysRevA.82.052521
http://dx.doi.org/10.1103/PhysRevA.86.050501
http://dx.doi.org/10.1103/PhysRevA.79.060502
http://dx.doi.org/ 10.1103/PhysRevLett.100.023003
http://dx.doi.org/ 10.1103/PhysRevLett.100.023003
http://dx.doi.org/ 10.1016/0375-9601(92)90206-2
http://dx.doi.org/ 10.1088/1367-2630/11/5/055049
http://dx.doi.org/10.1038/nature09443
http://www.nature.com/nature/journal/v512/n7514/full/nature13634.html
http://dx.doi.org/10.1038/nature11595
http://dx.doi.org/10.1103/PhysRevLett.13.138
http://dx.doi.org/10.1103/PhysRevLett.13.138
http://dx.doi.org/10.1016/j.aop.2005.04.002
http://dx.doi.org/10.1016/j.ppnp.2013.03.003
http://dx.doi.org/10.1016/j.ppnp.2013.03.003
http://arxiv.org/abs/1407.1064
http://dx.doi.org/10.1016/0031-9163(65)90583-4


B M Roberts

[139] P. G. H. Sandars, Phys. Rev. Lett. 19, 1396 (1967).

[140] L. I. Schiff, Phys. Rev. 132, 2194 (1963).

[141] V. V. Flambaum and A. Kozlov, Phys. Rev. A 85, 022505 (2012).

[142] E. S. Ensberg, Phys. Rev. 153, 36 (1967).

[143] M. A. Player and P. G. H. Sandars, J. Phys. B 3, 1620 (1970).

[144] J. J. Hudson, D. M. Kara, I. J. Smallman, B. E. Sauer, M. R. Tarbutt, and E. A.
Hinds, Nature 473, 493 (2011).

[145] S. Eckel, P. Hamilton, E. Kirilov, H. W. Smith, and D. DeMille, Phys. Rev. A
87, 052130 (2013).

[146] The ACME Collaboration, Science 343, 269 (2014).

[147] W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel, and
E. N. Fortson, Phys. Rev. Lett. 102, 101601 (2009).

[148] M. D. Swallows, T. H. Loftus, W. C. Griffith, B. R. Heckel, E. N. Fortson, and
M. V. Romalis, Phys. Rev. A 87, 012102 (2013).

[149] S. A. Murthy, D. Krause, Z. L. Li, and L. R. Hunter, Phys. Rev. Lett. 63, 965
(1989).

[150] B. C. Regan, E. D. Commins, C. J. Schmidt, and D. DeMille, Phys. Rev. Lett.
88, 071805 (2002).

[151] R. H. Parker, M. R. Dietrich, M. R. Kalita, N. D. Lemke, K. G. Bailey, M. Bishof,
J. Greene, R. J. Holt, W. Korsch, Z.-T. Lu, P. Mueller, T. P. O’Connor, and
J. T. Singh, arXiv:1504.07477.

[152] M. A. Rosenberry and T. E. Chupp, Phys. Rev. Lett. 86, 22 (2001).

[153] D. Cho, K. Sangster, and E. A. Hinds, Phys. Rev. A 44, 2783 (1991).

[154] M. V. Romalis and M. P. Ledbetter, Phys. Rev. Lett. 87, 067601 (2001).

[155] D. M. Kara, I. J. Smallman, J. J. Hudson, B. E. Sauer, M. R. Tarbutt, and E. A.
Hinds, New J. Phys. 14, 103051 (2012).

[156] M. R. Tarbutt, B. E. Sauer, J. J. Hudson, and E. A. Hinds, New J. Phys. 15,
053034 (2013).

[157] L. R. Hunter, S. K. Peck, A. S. Greenspon, S. S. Alam, and D. DeMille, Phys.
Rev. A 85, 012511 (2012).

[158] A. N. Petrov, L. V. Skripnikov, A. V. Titov, N. R. Hutzler, P. W. Hess, B. R.
O’Leary, B. Spaun, D. DeMille, G. Gabrielse, and J. M. Doyle, Phys. Rev. A
89, 062505 (2014).

[159] H. Loh, K. C. Cossel, M. C. Grau, K.-K. Ni, E. R. Meyer, J. L. Bohn, J. Ye,
and E. A. Cornell, Science 342, 1220 (2013).

[160] E. Kirilov, W. C. Campbell, J. M. Doyle, G. Gabrielse, Y. V. Gurevich, P. W.
Hess, N. R. Hutzler, B. R. OLeary, E. Petrik, B. Spaun, A. C. Vutha, and
D. DeMille, Phys. Rev. A 88, 013844 (2013).

[161] A. C. Vutha, B. Spaun, Y. V. Gurevich, N. R. Hutzler, E. Kirilov, J. M. Doyle,
G. Gabrielse, and D. DeMille, Phys. Rev. A 84, 034502 (2011).

[162] K. Asahi et al., Phys. Part. Nucl. 45, 199 (2014).

[163] T. Inoue et al., Hyperfine Interact. 231, 157 (2015).

[164] E. R. Tardiff et al., Hyperfine Interact. 225, 197 (2013).

[165] L. P. Gaffney et al., Nature 497, 199 (2013).

[166] R. H. Parker et al., Phys. Rev. C 86, 065503 (2012).

[167] R. J. Holt et al., Nucl. Phys. A 844, 53c (2010).

[168] B. Santra, U. Dammalapati, A. Groot, K. Jungmann, and L. Willmann, Phys.
Rev. A 90, 040501 (2014).

[169] K. Jungmann, Hyperfine Interact. 227, 5 (2014).

[170] B. J. Wundt, C. T. Munger, and U. D. Jentschura, Phys. Rev. X 2, 041009
(2012).

174

http://dx.doi.org/10.1103/PhysRevLett.19.1396
http://dx.doi.org/10.1103/PhysRev.132.2194
http://dx.doi.org/10.1103/PhysRevA.85.022505
http://dx.doi.org/10.1103/PhysRev.153.36
http://dx.doi.org/10.1088/0022-3700/3/12/007
http://dx.doi.org/ 10.1038/nature10104
http://dx.doi.org/ 10.1103/PhysRevA.87.052130
http://dx.doi.org/ 10.1103/PhysRevA.87.052130
http://dx.doi.org/10.1126/science.1248213
http://dx.doi.org/10.1103/PhysRevLett.102.101601
http://dx.doi.org/10.1103/PhysRevA.87.012102
http://dx.doi.org/ 10.1103/PhysRevLett.63.965
http://dx.doi.org/ 10.1103/PhysRevLett.63.965
http://dx.doi.org/10.1103/PhysRevLett.88.071805
http://dx.doi.org/10.1103/PhysRevLett.88.071805
http://arxiv.org/abs/1504.07477
http://dx.doi.org/10.1103/PhysRevLett.86.22
http://dx.doi.org/10.1103/PhysRevA.44.2783
http://dx.doi.org/10.1103/PhysRevLett.87.067601
http://dx.doi.org/ 10.1088/1367-2630/14/10/103051
http://dx.doi.org/10.1088/1367-2630/15/5/053034
http://dx.doi.org/10.1088/1367-2630/15/5/053034
http://dx.doi.org/ 10.1103/PhysRevA.85.012511
http://dx.doi.org/ 10.1103/PhysRevA.85.012511
http://dx.doi.org/10.1103/PhysRevA.89.062505
http://dx.doi.org/10.1103/PhysRevA.89.062505
http://dx.doi.org/ 10.1126/science.1243683
http://dx.doi.org/10.1103/PhysRevA.88.013844
http://dx.doi.org/10.1103/PhysRevA.84.034502
http://dx.doi.org/10.1134/S1063779614010080
http://dx.doi.org/10.1007/s10751-014-1100-1
http://dx.doi.org/10.1007/s10751-013-0898-2
http://dx.doi.org/10.1038/nature12073
http://dx.doi.org/10.1103/PhysRevC.86.065503
http://dx.doi.org/10.1016/j.nuclphysa.2010.05.013
http://link.aps.org/doi/10.1103/PhysRevA.90.040501
http://link.aps.org/doi/10.1103/PhysRevA.90.040501
http://dx.doi.org/10.1007/s10751-014-1046-3
http://dx.doi.org/10.1103/PhysRevX.2.041009
http://dx.doi.org/10.1103/PhysRevX.2.041009


B M Roberts

[171] J. A. Ludlow and O. P. Sushkov, J. Phys. B 46, 085001 (2013).

[172] D. Budker, Nat. Mater. 9, 608 (2010).

[173] D. Budker, S. K. Lamoreaux, A. O. Sushkov, and O. P. Sushkov, Phys. Rev. A
73, 022107 (2006).

[174] S. Eckel, A. O. Sushkov, and S. K. Lamoreaux, Phys. Rev. Lett. 109, 193003
(2012).

[175] P. G. H. Sandars, Phys. Lett. 22, 290 (1966).

[176] V. V. Flambaum, Sov. J. Nucl. Phys. 24, 199 (1976).

[177] L. V. Skripnikov, A. N. Petrov, and A. V. Titov, J. Chem. Phys. 139, 221103
(2013).

[178] T. Fleig and M. K. Nayak, J. Mol. Spectrosc. 300, 16 (2014).

[179] Z. W. Liu and H. P. Kelly, Phys. Rev. A 45, 4210 (1992).

[180] V. A. Dzuba and V. V. Flambaum, Phys. Rev. A 80, 062509 (2009).

[181] S. G. Porsev, M. S. Safronova, and M. G. Kozlov, Phys. Rev. Lett. 108, 173001
(2012).

[182] H. S. Nataraj, B. K. Sahoo, B. P. Das, and D. Mukherjee, Phys. Rev. Lett. 106,
200403 (2011).

[183] S. A. Blundell, J. Sapirstein, and W. R. Johnson, Phys. Rev. D 45, 1602 (1992).

[184] M. S. Safronova, 45th Annual Meeting of the APS Divi-
sion of Atomic, Molecular and Optical Physics [online], meet-
ings.aps.org/Meeting/DAMOP14/Event/220745 (2014).

[185] A. Derevianko, APS April Meeting 2015 [online],
http://meetings.aps.org/Meeting/APR15/Event/244003 (2015).

[186] N. V. Novikov, O. P. Sushkov, V. V. Flambaum, and I. B. Khriplovich, Sov.
Phys. JETP 46, 420 (1977).

[187] C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. Depalatis, D. E. Naylor,
D. N. Matsukevich, A. Kuzmich, and M. S. Chapman, Phys. Rev. Lett. 102,
233004 (2009).

[188] A. Kramida, Y. Ralchenko, J. Reader, and The NIST ASD Team (2013),
NIST Atomic Spectra Database (ver. 5.1) [Online], http://physics.nist.gov/asd
(2015).

[189] J. Blaise and J.-F. Wyart, Energy levels and atomic spectra of actinides,
International Tables of Selected Constants 20 [online], http://web2.lac.u-
psud.fr/lac/Database/Conten (1992).

[190] V. A. Dzuba, Phys. Rev. A 78, 042502 (2008).

[191] B. M. Roberts, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 88, 012510
(2013).

[192] R. J. Rafac, C. E. Tanner, A. E. Livingston, and H. G. Berry, Phys. Rev. A 60,
3648 (1999).

[193] L. Young, W. T. Hill, S. J. Sibener, S. D. Price, C. E. Tanner, C. E. Wieman,
and S. R. Leone, Phys. Rev. A 50, 2174 (1994).

[194] A. A. Vasilyev, I. M. Savukov, M. S. Safronova, and H. G. Berry, Phys. Rev. A
66, 020101 (2002).

[195] L. N. Shabanova, Y. N. Monakov, and A. N. Khlyustalov, Opt. Spektrosk. 47,
3 (1979).

[196] D. DiBerardino, C. E. Tanner, and A. Sieradzan, Phys. Rev. A 57, 4204 (1998).

[197] V. M. Shabaev, I. I. Tupitsyn, K. Pachucki, G. Plunien, and V. A. Yerokhin,
Phys. Rev. A 72, 062105 (2005).

[198] B. K. Sahoo, B. P. Das, R. K. Chaudhuri, and D. Mukherjee, Phys. Rev. A 75,
032507 (2007).

[199] V. A. Dzuba, V. V. Flambaum, A. Y. Kraftmakher, and O. P. Sushkov, Phys.

175

http://dx.doi.org/10.1088/0953-4075/46/8/085001
http://dx.doi.org/10.1038/nmat2809
http://dx.doi.org/10.1103/PhysRevA.73.022107
http://dx.doi.org/10.1103/PhysRevA.73.022107
http://dx.doi.org/10.1103/PhysRevLett.109.193003
http://dx.doi.org/10.1103/PhysRevLett.109.193003
http://dx.doi.org/10.1016/0031-9163(66)90618-4
http://dx.doi.org/10.1063/1.4843955
http://dx.doi.org/10.1063/1.4843955
http://dx.doi.org/10.1016/j.jms.2014.03.017
http://link.aps.org/doi/10.1103/PhysRevA.45.R4210
http://dx.doi.org/10.1103/PhysRevA.80.062509
http://dx.doi.org/10.1103/PhysRevLett.108.173001
http://dx.doi.org/10.1103/PhysRevLett.108.173001
http://dx.doi.org/10.1103/PhysRevLett.106.200403
http://dx.doi.org/10.1103/PhysRevLett.106.200403
http://dx.doi.org/10.1103/PhysRevD.45.1602
http://meetings.aps.org/Meeting/DAMOP14/Event/220745
http://meetings.aps.org/Meeting/DAMOP14/Event/220745
http://meetings.aps.org/Meeting/DAMOP14/Event/220745
http://meetings.aps.org/Meeting/APR15/Event/244003
http://meetings.aps.org/Meeting/APR15/Event/244003
http://www.jetp.ac.ru/cgi-bin/dn/e_046_03_0420.pdf http://www.jetp.ac.ru/cgi-bin/e/index/e/46/3/p420?a=list
http://www.jetp.ac.ru/cgi-bin/dn/e_046_03_0420.pdf http://www.jetp.ac.ru/cgi-bin/e/index/e/46/3/p420?a=list
http://dx.doi.org/10.1103/PhysRevLett.102.233004
http://dx.doi.org/10.1103/PhysRevLett.102.233004
http://physics.nist.gov/asd
http://physics.nist.gov/asd
http://web2.lac.u-psud.fr/lac/Database/Contents.html
http://web2.lac.u-psud.fr/lac/Database/Contents.html
http://web2.lac.u-psud.fr/lac/Database/Contents.html
http://dx.doi.org/10.1103/PhysRevA.78.042502
http://dx.doi.org/10.1103/PhysRevA.88.012510
http://dx.doi.org/10.1103/PhysRevA.88.012510
http://dx.doi.org/10.1103/PhysRevA.60.3648
http://dx.doi.org/10.1103/PhysRevA.60.3648
http://dx.doi.org/ 10.1103/PhysRevA.50.2174
http://dx.doi.org/10.1103/PhysRevA.66.020101
http://dx.doi.org/10.1103/PhysRevA.66.020101
http://dx.doi.org/10.1103/PhysRevA.57.4204
http://dx.doi.org/10.1103/PhysRevA.72.062105
http://dx.doi.org/10.1103/PhysRevA.75.032507
http://dx.doi.org/10.1103/PhysRevA.75.032507
http://dx.doi.org/10.1016/0375-9601(89)90385-X
http://dx.doi.org/10.1016/0375-9601(89)90385-X


B M Roberts

Lett. A 142, 373 (1989).

[200] U. I. Safronova, W. R. Johnson, and M. S. Safronova, Phys. Rev. A 74, 042511
(2006).

[201] M. S. Safronova and U. I. Safronova, Phys. Rev. A 87, 062509 (2013).

[202] B. M. Roberts, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 89, 012502
(2014).

[203] D. S. Elliot, private communication (2013).

[204] K. P. Geetha, A. D. Singh, B. P. Das, and C. S. Unnikrishnan, Phys. Rev. A
58, R16 (1998).

[205] B. K. Sahoo, P. Mandal, and D. Mukherjee, Phys. Rev. A 83, 030502 (2011).

[206] W. R. Johnson and J. Sapirstein, Phys. Rev. Lett. 57, 1126 (1986).

[207] M. D. Davidson, L. C. Snoek, H. Volten, and A. Doenszelmann, Astron. Astro-
phys. 255, 457 (1992).

[208] S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz,
and C. Monroe, Phys. Rev. A 76, 052314 (2007).

[209] S. Olmschenk, D. Hayes, D. N. Matsukevich, P. Maunz, D. L. Moehring, K. C.
Younge, and C. Monroe, Phys. Rev. A 80, 022502 (2009).

[210] E. H. Pinnington, G. Rieger, and J. A. Kernahan, Phys. Rev. A 56, 2421 (1997).

[211] A. Kastberg, P. Villemoes, and A. Arnesen, J. Opt. Soc. Am. B 10, 1330 (1993).

[212] J. Sherman, A. Andalkar, W. Nagourney, and E. N. Fortson, Phys. Rev. A 78,
052514 (2008).

[213] V. A. Dzuba and V. V. Flambaum, Phys. Rev. A 83, 052513 (2011).

[214] E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49, 31 (1977).

[215] K. Wendt, S. A. Ahmad, F. Buchinger, A. C. Mueller, R. Neugart, and E.-W.
Otten, Z. Phys. A 318, 125 (1984).
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